Extremal bipartite graphs and superpolynomial lower bounds for monotone span programs

Author(s):  
László Babai ◽  
Anna Gál ◽  
János Kollár ◽  
Lajos Rónyai ◽  
Tibor Szabó ◽  
...  
1994 ◽  
Vol 1 (46) ◽  
Author(s):  
Amos Beimel

The model of span programs is a linear algebraic model of computation. Lower bounds for span programs imply lower bounds for contact schemes, symmetric branching programs and for formula size. Monotone span programs correspond also to linear secret-sharing schemes. We present a new technique for proving lower bounds for monotone span programs. The main result proved here yields quadratic lower bounds for the size of monotone span programs, improving on the largest previously known bounds for explicit functions. The bound is asymptotically tight for the function corresponding to a class of 4-cliques.


COMBINATORICA ◽  
1999 ◽  
Vol 19 (3) ◽  
pp. 301-319 ◽  
Author(s):  
László Babai ◽  
Anna Gál ◽  
Avi Wigderson

1996 ◽  
Vol 6 (1) ◽  
pp. 29-45 ◽  
Author(s):  
Amos Beimel ◽  
Anna G�l ◽  
Mike Paterson

10.37236/93 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Guy Wolfovitz

We consider the next random process for generating a maximal $H$-free graph: Given a fixed graph $H$ and an integer $n$, start by taking a uniformly random permutation of the edges of the complete $n$-vertex graph $K_n$. Then, traverse the edges of $K_n$ according to the order imposed by the permutation and add each traversed edge to an (initially empty) evolving $n$-vertex graph - unless its addition creates a copy of $H$. The result of this process is a maximal $H$-free graph ${\Bbb M}_n(H)$. Our main result is a new lower bound on the expected number of edges in ${\Bbb M}_n(H)$, for $H$ that is regular, strictly $2$-balanced. As a corollary, we obtain new lower bounds for Turán numbers of complete, balanced bipartite graphs. Namely, for fixed $r \ge 5$, we show that ex$(n, K_{r,r}) = \Omega(n^{2-2/(r+1)}(\ln\ln n)^{1/(r^2-1)})$. This improves an old lower bound of Erdős and Spencer. Our result relies on giving a non-trivial lower bound on the probability that a given edge is included in ${\Bbb M}_n(H)$, conditioned on the event that the edge is traversed relatively (but not trivially) early during the process.


2021 ◽  
pp. 2150041
Author(s):  
Hanxiao Qiao ◽  
Ke Wang ◽  
Suonan Renqian ◽  
Renqingcuo

For bipartite graphs [Formula: see text], the bipartite Ramsey number [Formula: see text] is the least positive integer [Formula: see text] so that any coloring of the edges of [Formula: see text] with [Formula: see text] colors will result in a copy of [Formula: see text] in the [Formula: see text]th color for some [Formula: see text]. In this paper, we get the exact value of [Formula: see text], and obtain the upper and lower bounds of [Formula: see text], where [Formula: see text] denotes a path with [Formula: see text] vertices.


2019 ◽  
Vol 69 (2) ◽  
pp. 571-592
Author(s):  
Barbara Kaskosz ◽  
Lubos Thoma

Sign in / Sign up

Export Citation Format

Share Document