Computational Complexity
Latest Publications


TOTAL DOCUMENTS

510
(FIVE YEARS 38)

H-INDEX

38
(FIVE YEARS 1)

Published By Springer-Verlag

1420-8954, 1016-3328

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Austin Conner ◽  
Fulvio Gesmundo ◽  
Joseph M. Landsberg ◽  
Emanuele Ventura

AbstractWe prove that the border rank of the Kronecker square of the little Coppersmith–Winograd tensor $$T_{cw,q}$$ T c w , q is the square of its border rank for $$q > 2$$ q > 2 and that the border rank of its Kronecker cube is the cube of its border rank for $$q > 4$$ q > 4 . This answers questions raised implicitly by Coppersmith & Winograd (1990, §11) and explicitly by Bläser (2013, Problem 9.8) and rules out the possibility of proving new upper bounds on the exponent of matrix multiplication using the square or cube of a little Coppersmith–Winograd tensor in this range.In the positive direction, we enlarge the list of explicit tensors potentially useful for Strassen's laser method, introducing a skew-symmetric version of the Coppersmith–Winograd tensor, $$T_{skewcw,q}$$ T s k e w c w , q . For $$q = 2$$ q = 2 , the Kronecker square of this tensor coincides with the $$3\times 3$$ 3 × 3 determinant polynomial, $$\det_{3} \in \mathbb{C}^{9} \otimes \mathbb{C}^{9} \otimes \mathbb{C}^{9}$$ det 3 ∈ C 9 ⊗ C 9 ⊗ C 9 , regarded as a tensor. We show that this tensor could potentially be used to show that the exponent of matrix multiplication is two.We determine new upper bounds for the (Waring) rank and the (Waring) border rank of $$\det_3$$ det 3 , exhibiting a strict submultiplicative behaviour for $$T_{skewcw,2}$$ T s k e w c w , 2 which is promising for the laser method.We establish general results regarding border ranks of Kronecker powers of tensors, and make a detailed study of Kronecker squares of tensors in $$\mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}$$ C 3 ⊗ C 3 ⊗ C 3 .


2021 ◽  
Vol 30 (2) ◽  
Author(s):  
Dmitry Itsykson ◽  
Artur Riazanov ◽  
Danil Sagunov ◽  
Petr Smirnov
Keyword(s):  

2021 ◽  
Vol 30 (2) ◽  
Author(s):  
Amit Sinhababu ◽  
Thomas Thierauf

AbstractGiven a multivariate polynomial computed by an arithmetic branching program (ABP) of size s, we show that all its factors can be computed by arithmetic branching programs of size poly(s). Kaltofen gave a similar result for polynomials computed by arithmetic circuits. The previously known best upper bound for ABP-factors was poly $$ (s^{ {\rm \log} s}) $$ ( s log s ) .


2021 ◽  
Vol 30 (2) ◽  
Author(s):  
Nathanaël Fijalkow ◽  
Guillaume Lagarde ◽  
Pierre Ohlmann ◽  
Olivier Serre

2021 ◽  
Vol 30 (2) ◽  
Author(s):  
Dmitry Itsykson ◽  
Artur Riazanov ◽  
Danil Sagunov ◽  
Petr Smirnov
Keyword(s):  

2021 ◽  
Vol 30 (2) ◽  
Author(s):  
Tom Gur ◽  
Yang P. Liu ◽  
Ron D. Rothblum

AbstractInteractive proofs of proximity allow a sublinear-time verifier to check that a given input is close to the language, using a small amount of communication with a powerful (but untrusted) prover. In this work, we consider two natural minimally interactive variants of such proofs systems, in which the prover only sends a single message, referred to as the proof. The first variant, known as -proofs of Proximity (), is fully non-interactive, meaning that the proof is a function of the input only. The second variant, known as -proofs of Proximity (), allows the proof to additionally depend on the verifier's (entire) random string. The complexity of both s and s is the total number of bits that the verifier observes—namely, the sum of the proof length and query complexity. Our main result is an exponential separation between the power of s and s. Specifically, we exhibit an explicit and natural property $$\Pi$$ Π that admits an with complexity $$O(\log n)$$ O ( log n ) , whereas any for $$\Pi$$ Π has complexity $$\tilde{\Omega}(n^{1/4})$$ Ω ~ ( n 1 / 4 ) , where n denotes the length of the input in bits. Our lower bound also yields an alternate proof, which is more general and arguably much simpler, for a recent result of Fischer et al. (ITCS, 2014). Also, Aaronson (Quantum Information & Computation 2012) has shown a $$\Omega(n^{1/6})$$ Ω ( n 1 / 6 ) lower bound for the same property $$\Pi$$ Π .Lastly, we also consider the notion of oblivious proofs of proximity, in which the verifier's queries are oblivious to the proof. In this setting, we show that s can only be quadratically stronger than s. As an application of this result, we show an exponential separation between the power of public and private coin for oblivious interactive proofs of proximity.


2021 ◽  
Vol 30 (2) ◽  
Author(s):  
Alexander A. Sherstov

AbstractWe study the approximation of halfspaces $$h:\{0,1\}^n\to\{0,1\}$$ h : { 0 , 1 } n → { 0 , 1 } in the infinity norm by polynomials and rational functions of any given degree. Our main result is an explicit construction of the “hardest” halfspace, for which we prove polynomial and rational approximation lower bounds that match the trivial upper bounds achievable for all halfspaces. This completes a lengthy line of work started by Myhill and Kautz (1961). As an application, we construct a communication problem that achieves essentially the largest possible separation, of O(n) versus $$2^{-\Omega(n)}$$ 2 - Ω ( n ) , between the sign-rank and discrepancy. Equivalently, our problem exhibits a gap of log n versus $$\Omega(n)$$ Ω ( n ) between the communication complexity with unbounded versus weakly unbounded error, improving quadratically on previous constructions and completing a line of work started by Babai, Frankl, and Simon (FOCS 1986). Our results further generalize to the k-party number-on-the-forehead model, where we obtain an explicit separation of log n versus $$\Omega(n/4^{n})$$ Ω ( n / 4 n ) for communication with unbounded versus weakly unbounded error.


2021 ◽  
Vol 30 (2) ◽  
Author(s):  
Toniann Pitassi ◽  
Morgan Shirley ◽  
Thomas Watson

Sign in / Sign up

Export Citation Format

Share Document