Accelerating virtual high-throughput ligand docking

Author(s):  
Sally R. Ellingson ◽  
Sivanesan Dakshanamurthy ◽  
Milton Brown ◽  
Jeremy C. Smith ◽  
Jerome Baudry
2019 ◽  
Author(s):  
Melanie Schneider ◽  
Jean-Luc Pons ◽  
William Bourguet ◽  
Gilles Labesse

AbstractMotivationNowadays, virtual screening (VS) plays a major role in the process of drug development. Nonetheless, an accurate estimation of binding affinities, which is crucial at all stages, is not trivial and may require target-specific fine-tuning. Furthermore, drug design also requires improved predictions for putative secondary targets among which is Estrogen Receptor alpha (ERα).ResultsVS based on combinations of Structure-Based VS (SBVS) and Ligand-Based VS (LBVS) is gaining momentum to help characterizing secondary targets of xenobiotics (including drugs and pollutants). In this study, we propose an integrated approach using ligand docking based on multiple structural en-sembles to reflect the conformational flexibility of the receptor. Then, we investigate the impact of the two different types of features (structure-based docking descriptors and ligand-based molecular descriptors) for affinity predictions based on a random forest algorithm. We find that ligand-based features have limited predictive power (rP=0.69,R2=0.47), compared to structure-based features (rP=0.78,R2=0.60) while their combination maintains the overall accuracy (rP=0.77,R2=0.56). Extending the training dataset to include xenobiotics, leads to a novel high-throughput affinity prediction method for ERαligands (rP=0.85,R2=0.71). Method’s robustness is tested on several ligand databases and performances are compared with existing rescoring procedures. The presented prediction tool is provided to the community as a dedicated satellite of the @TOME server.Availabilityhttp://atome4.cbs.cnrs.fr/ATOME_V3/SERVER/[email protected],[email protected]


2015 ◽  
Author(s):  
Kamariah Ibrahim ◽  
Abubakar Danjuma ◽  
Chyan Leong Ng ◽  
Nor Azian Abdul Murad ◽  
Roslan Harun ◽  
...  

Background: Glioblastoma multiforme (GBM) is a grade IV brain tumor that arises from star-shaped glial cells supporting neural cells called astrocytes. The survival of GBM patients remains poor despite many specific molecular targets have been developed. Tousled-like kinase 1 (TLK1), a serine-threonine kinase, was identified to be overexpressed in cancer such as GBM. TLK1 plays an important role in controlling chromosomal aggregation, cell survival and proliferation. In vitro studies suggested that TLK1 is a potential target for some cancers. Hence, identification of suitable molecular inhibitors for TLK1 is warranted as new therapeutic agents in GBM. To date, there is no direct structural information available from X-ray crystallography and NMR studies for TLK1. In this study, we aimed to create a homology model of TLK1 and to identify suitable molecular inhibitors or compounds that are likely to bind and inhibit TLK1 activity via in silico high-throughput virtual screening (HTVS) protein-ligand docking. Methods: 3D homology models of TLK1 were derived from various servers including HOmology ModellER, i-Tasser, Psipred and Swiss Model. All models were evaluated using Swiss-Model Q-Mean server. Only one model was selected for further analysis. Further validation was performed using PDBsum, 3d2go, ProSA, Procheck analysis and ERRAT. Energy minimization was performed using YASARA energy minimization server. Subsequently, HTVS was performed using Molegro Virtual Docker 6.0 and candidate ligands from ligand.info database. Ligand-docking procedures were analyzed at the catalytic site of TLK1. Drug-like molecules were filtered using FAFDrugs3 ADME-Tox filter. Results and conclusion: High quality homology models were obtained from the 4B8M Aurora B kinase derived from Xenopus levias structure that share 33% sequence identity to TLK1. From the HTVS ligand-docking, two compounds were identified to be the potential inhibitors as it did not violate the Lipinski rule of five and CNS-based filter as a potential drug-like molecule for GBM.


2016 ◽  
Author(s):  
Kamariah Ibrahim ◽  
Abubakar Danjuma ◽  
Chyan Leong Ng ◽  
Nor Azian Abdul Murad ◽  
Roslan Harun ◽  
...  

Background: Glioblastoma multiforme (GBM) is a grade IV brain tumor that arises from star-shaped glial cells supporting neural cells called astrocytes. The survival of GBM patients remains poor despite many specific molecular targets that have been developed and used for therapy. Tousled-like kinase 1 (TLK1), a serine-threonine kinase, was identified to be overexpressed in cancers such as GBM. TLK1 plays an important role in controlling chromosomal aggregation, cell survival and proliferation. In vitro studies suggested that TLK1 is a potential target for some cancers; hence, the identification of suitable molecular inhibitors for TLK1 is warranted as a new therapeutic agents in GBM. To date, there is no structure available for TLK1. In this study, we aimed to create a homology model of TLK1 and to identify suitable molecular inhibitors or compounds that are likely to bind and inhibit TLK1 activity via in silico high-throughput virtual screening (HTVS) protein-ligand docking. Methods: 3D homology models of TLK1 were derived from various servers including HOmology ModellER, i-Tasser, Psipred and Swiss Model. All models were evaluated using Swiss Model Q-Mean server. Only one model was selected for further analysis. Further validation was performed using PDBsum, 3d2go, ProSA, Procheck analysis and ERRAT. Energy minimization was performed using YASARA energy minimization server. Subsequently, HTVS was performed using Molegro Virtual Docker 6.0 and candidate ligands from ligand.info database. Ligand-docking procedures were analyzed at the putative catalytic site of TLK1. Drug-like molecules were filtered using FAF-Drugs3, which is an ADME-Tox filtering program. Results and conclusion: High quality homology models were obtained from the Aurora B kinase (PDB ID:4B8M) derived from Xenopus levias structure that share 33% sequence identity to TLK1. From the HTVS ligand-docking, two compounds were identified to be the potential inhibitors as it did not violate the Lipinski rule of five and the CNS-based filter as a potential drug-like molecule for GBM.


2013 ◽  
Vol 26 (6) ◽  
pp. 1268-1277 ◽  
Author(s):  
Sally R. Ellingson ◽  
Sivanesan Dakshanamurthy ◽  
Milton Brown ◽  
Jeremy C. Smith ◽  
Jerome Baudry

2016 ◽  
Author(s):  
Kamariah Ibrahim ◽  
Abubakar Danjuma ◽  
Chyan Leong Ng ◽  
Nor Azian Abdul Murad ◽  
Roslan Harun ◽  
...  

Background: Glioblastoma multiforme (GBM) is a grade IV brain tumor that arises from star-shaped glial cells supporting neural cells called astrocytes. The survival of GBM patients remains poor despite many specific molecular targets that have been developed and used for therapy. Tousled-like kinase 1 (TLK1), a serine-threonine kinase, was identified to be overexpressed in cancers such as GBM. TLK1 plays an important role in controlling chromosomal aggregation, cell survival and proliferation. In vitro studies suggested that TLK1 is a potential target for some cancers; hence, the identification of suitable molecular inhibitors for TLK1 is warranted as a new therapeutic agents in GBM. To date, there is no structure available for TLK1. In this study, we aimed to create a homology model of TLK1 and to identify suitable molecular inhibitors or compounds that are likely to bind and inhibit TLK1 activity via in silico high-throughput virtual screening (HTVS) protein-ligand docking. Methods: 3D homology models of TLK1 were derived from various servers including HOmology ModellER, i-Tasser, Psipred and Swiss Model. All models were evaluated using Swiss Model Q-Mean server. Only one model was selected for further analysis. Further validation was performed using PDBsum, 3d2go, ProSA, Procheck analysis and ERRAT. Energy minimization was performed using YASARA energy minimization server. Subsequently, HTVS was performed using Molegro Virtual Docker 6.0 and candidate ligands from ligand.info database. Ligand-docking procedures were analyzed at the putative catalytic site of TLK1. Drug-like molecules were filtered using FAF-Drugs3, which is an ADME-Tox filtering program. Results and conclusion: High quality homology models were obtained from the Aurora B kinase (PDB ID:4B8M) derived from Xenopus levias structure that share 33% sequence identity to TLK1. From the HTVS ligand-docking, two compounds were identified to be the potential inhibitors as it did not violate the Lipinski rule of five and the CNS-based filter as a potential drug-like molecule for GBM.


Author(s):  
Ravi Kumar A, Et. al.

The paper reviews the usage of the platform Hadoop in applications for systemic bioinformatics. Hadoop offers another system for Structural Bioinformatics to break down broad fractions of the Protein Data Bank that is crucial to high-throughput investigations of (for example) protein-ligand docking, protein-ligand complex clustering, and structural alignment. In specific, we review different applications of high-throughput analyses and their scalability in the literature using Hadoop. In comparison to revising the algorithms, we find that these organisations typically use a realized executable called MapReduce. Scalability demonstrates variable behavior in correlation with other batch schedulers, particularly as immediate examinations are usually not accessible on a similar platform. Direct Hadoop examinations with batch schedulers are missing in the literature, but we note that there is some evidence that the scale of MPI executions is better than Hadoop. The dilemma of the interface and structure of an asset to use Hadoop is a significant obstacle to the utilization of the Hadoop biological framework. This will enhance additional time as Hadoop interfaces, such as enhancing Flash, increasing the use of cloud platforms, and normalized approaches, for example, are taken up by Workflow Languages.


2019 ◽  
Vol 36 (1) ◽  
pp. 160-168 ◽  
Author(s):  
Melanie Schneider ◽  
Jean-Luc Pons ◽  
William Bourguet ◽  
Gilles Labesse

Abstract Motivation Nowadays, virtual screening (VS) plays a major role in the process of drug development. Nonetheless, an accurate estimation of binding affinities, which is crucial at all stages, is not trivial and may require target-specific fine-tuning. Furthermore, drug design also requires improved predictions for putative secondary targets among which is Estrogen Receptor alpha (ERα). Results VS based on combinations of Structure-Based VS (SBVS) and Ligand-Based VS (LBVS) is gaining momentum to improve VS performances. In this study, we propose an integrated approach using ligand docking on multiple structural ensembles to reflect receptor flexibility. Then, we investigate the impact of the two different types of features (structure-based and ligand molecular descriptors) on affinity predictions using a random forest algorithm. We find that ligand-based features have lower predictive power (rP = 0.69, R2 = 0.47) than structure-based features (rP = 0.78, R2 = 0.60). Their combination maintains high accuracy (rP = 0.73, R2 = 0.50) on the internal test set, but it shows superior robustness on external datasets. Further improvement and extending the training dataset to include xenobiotics, leads to a novel high-throughput affinity prediction method for ERα ligands (rP = 0.85, R2 = 0.71). The presented prediction tool is provided to the community as a dedicated satellite of the @TOME server in which one can upload a ligand dataset in mol2 format and get ligand docked and affinity predicted. Availability and implementation http://edmon.cbs.cnrs.fr. Supplementary information Supplementary data are available at Bioinformatics online.


2016 ◽  
Author(s):  
Kamariah Ibrahim ◽  
Abubakar Danjuma ◽  
Chyan Leong Ng ◽  
Nor Azian Abdul Murad ◽  
Roslan Harun ◽  
...  

Background: Glioblastoma multiforme (GBM) is a grade IV brain tumor that arises from star-shaped glial cells supporting neural cells called astrocytes. The survival of GBM patients remains poor despite many specific molecular targets that have been developed and used for therapy. Tousled-like kinase 1 (TLK1), a serine-threonine kinase, was identified to be overexpressed in cancers such as GBM. TLK1 plays an important role in controlling chromosomal aggregation, cell survival and proliferation. In vitro studies suggested that TLK1 is a potential target for some cancers; hence, the identification of suitable molecular inhibitors for TLK1 is warranted as a new therapeutic agents in GBM. To date, there is no structure available for TLK1. In this study, we aimed to create a homology model of TLK1 and to identify suitable molecular inhibitors or compounds that are likely to bind and inhibit TLK1 activity via in silico high-throughput virtual screening (HTVS) protein-ligand docking. Methods: 3D homology models of TLK1 were derived from various servers including HOmology ModellER, i-Tasser, Psipred and Swiss Model. All models were evaluated using Swiss Model Q-Mean server. Only one model was selected for further analysis. Further validation was performed using PDBsum, 3d2go, ProSA, Procheck analysis and ERRAT. Energy minimization was performed using YASARA energy minimization server. Subsequently, HTVS was performed using Molegro Virtual Docker 6.0 and candidate ligands from ligand.info database. Ligand-docking procedures were analyzed at the putative catalytic site of TLK1. Drug-like molecules were filtered using FAF-Drugs3, which is an ADME-Tox filtering program. Results and conclusion: High quality homology models were obtained from the Aurora B kinase (PDB ID:4B8M) derived from Xenopus levias structure that share 33% sequence identity to TLK1. From the HTVS ligand-docking, two compounds were identified to be the potential inhibitors as it did not violate the Lipinski rule of five and the CNS-based filter as a potential drug-like molecule for GBM.


Sign in / Sign up

Export Citation Format

Share Document