Integral closure of Noetherian rings

Author(s):  
Patrizia Gianni ◽  
Barry Trager
1992 ◽  
Vol 35 (3) ◽  
pp. 511-518
Author(s):  
H. Ansari Toroghy ◽  
R. Y. Sharp

Let E be an injective module over a commutative Noetherian ring A (with non-zero identity), and let a be an ideal of A. The submodule (0:Eα) of E has a secondary representation, and so we can form the finite set AttA(0:Eα) of its attached prime ideals. In [1, 3.1], we showed that the sequence of sets is ultimately constant; in [2], we introduced the integral closure a*(E) of α relative to E, and showed that is increasing and ultimately constant. In this paper, we prove that, if a contains an element r such that rE = E, then is ultimately constant, and we obtain information about its ultimate constant value.


1988 ◽  
Vol 30 (3) ◽  
pp. 359-367 ◽  
Author(s):  
Linda Becerra

In [4], R. P. Dilworth introduced the concept of a Noether lattice as an abstraction of the lattice of ideals of a Noetherian ring and he showed that many important properties of Noetherian rings, such as the Noether decomposition theorems, also hold for Noether lattices. It was later shown, in [1], that every Noether lattice is not the lattice of ideals of any Noetherian ring, yet many studies have successfully been undertaken to relate other concepts between Noetherian rings and Noether lattices as had been begun by Dilworth. (See [3], [5], and [6].) In this paper we undertake such a study and show that some results of M. Brodmann in [2] and L. Ratliff in [7] concerning prime divisors of large powers of a fixed element of a commutative Noetherian ring may be generalized and extended to the setting of a Noether lattice. It is shown (Theorem 2.8) that if A is an element of a Noether lattice then all large powers of A have the same prime divisors and (Corollary 3.8) included among this fixed set of primes are those primes that are prime divisors of the integral closure of Ak for some k≧l. We note that the ring proof of this latter result does not generalize directly since it uses the notion of transcendence degree which to our knowledge has no analogue in multiplicative lattices.


Author(s):  
John Cozzens ◽  
CArl Faith
Keyword(s):  

1968 ◽  
Vol 177 (4) ◽  
pp. 278-282 ◽  
Author(s):  
Paul M. Eakin
Keyword(s):  

2007 ◽  
Vol 208 (2) ◽  
pp. 739-760 ◽  
Author(s):  
Meral Arnavut ◽  
Melissa Luckas ◽  
Sylvia Wiegand

1979 ◽  
Vol 20 (2) ◽  
pp. 125-128 ◽  
Author(s):  
A. W. Chatters

Throughout this note, rings are associative with identity element but are not necessarily commutative. Let R be a left and right Noetherian ring which has an Artinian (classical) quotient ring. It was shown by S. M. Ginn and P. B. Moss [2, Theorem 10] that there is a central idempotent element e of R such that eR is the largest Artinian ideal of R. We shall extend this result, using a different method of proof, to show that the idempotent e is also related to the socle of R/N (where N, throughout, denotes the largest nilpotent ideal of R) and to the intersection of all the principal right (or left) ideals of R generated by regular elements (i.e. by elements which are not zero-divisors). There are many examples of left and right Noetherian rings with Artinian quotient rings, e.g. commutative Noetherian rings in which all the associated primes of zero are minimal together with full or triangular matrix rings over such rings. It was shown by L. W. Small that if R is any left and right Noetherian ring then R has an Artinian quotient ring if and only if the regular elements of R are precisely the elements c of R such that c + N is a regular element of R/N (for further details and examples see [5] and [6]). By the largest Artinian ideal of R we mean the sum of all the Artinian right ideals of R, and it was shown by T. H. Lenagan in [3] that this coincides in any left and right Noetherian ring R with the sum of all the Artinian left ideals of R.


Sign in / Sign up

Export Citation Format

Share Document