Design Space Exploration of Magnetic Tunnel Junction based Stochastic Computing in Deep Learning

Author(s):  
You Wang ◽  
Yue Zhang ◽  
Youguang Zhang ◽  
Weisheng Zhao ◽  
Hao Cai ◽  
...  
2021 ◽  
Vol 15 (1) ◽  
pp. 85-97
Author(s):  
Ji Sun ◽  
Jintao Zhang ◽  
Zhaoyan Sun ◽  
Guoliang Li ◽  
Nan Tang

Cardinality estimation is core to the query optimizers of DBMSs. Non-learned methods, especially based on histograms and samplings, have been widely used in commercial and open-source DBMSs. Nevertheless, histograms and samplings can only be used to summarize one or few columns, which fall short of capturing the joint data distribution over an arbitrary combination of columns, because of the oversimplification of histograms and samplings over the original relational table(s). Consequently, these traditional methods typically make bad predictions for hard cases such as queries over multiple columns, with multiple predicates, and joins between multiple tables. Recently, learned cardinality estimators have been widely studied. Because these learned estimators can better capture the data distribution and query characteristics, empowered by the recent advance of (deep learning) models, they outperform non-learned methods on many cases. The goals of this paper are to provide a design space exploration of learned cardinality estimators and to have a comprehensive comparison of the SOTA learned approaches so as to provide a guidance for practitioners to decide what method to use under various practical scenarios.


Sign in / Sign up

Export Citation Format

Share Document