Multimodal Continuous Emotion Recognition with Data Augmentation Using Recurrent Neural Networks

Author(s):  
Jian Huang ◽  
Ya Li ◽  
Jianhua Tao ◽  
Zheng Lian ◽  
Mingyue Niu ◽  
...  
2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


2020 ◽  
Vol 17 (8) ◽  
pp. 3786-3789
Author(s):  
P. Gayathri ◽  
P. Gowri Priya ◽  
L. Sravani ◽  
Sandra Johnson ◽  
Visanth Sampath

Recognition of emotions is the aspect of speech recognition that is gaining more attention and the need for it is growing enormously. Although there are methods to identify emotion using machine learning techniques, we assume in this paper that calculating deltas and delta-deltas for customized features not only preserves effective emotional information, but also that the impact of irrelevant emotional factors, leading to a reduction in misclassification. Furthermore, Speech Emotion Recognition (SER) often suffers from the silent frames and irrelevant emotional frames. Meanwhile, the process of attention has demonstrated exceptional performance in learning related feature representations for specific tasks. Inspired by this, propose a Convolutionary Recurrent Neural Networks (ACRNN) based on Attention to learn discriminative features for SER, where the Mel-spectrogram with deltas and delta-deltas is used as input. Finally, experimental results show the feasibility of the proposed method and attain state-of-the-art performance in terms of unweighted average recall.


Sign in / Sign up

Export Citation Format

Share Document