Pedestrian Detection based on Reduced High-Dimensional Distinctive Feature using Deep Neural Network

Author(s):  
Hyun Chul Song ◽  
Kwang Nam Choi
Risks ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 136
Author(s):  
Stefan Kremsner ◽  
Alexander Steinicke ◽  
Michaela Szölgyenyi

In insurance mathematics, optimal control problems over an infinite time horizon arise when computing risk measures. An example of such a risk measure is the expected discounted future dividend payments. In models which take multiple economic factors into account, this problem is high-dimensional. The solutions to such control problems correspond to solutions of deterministic semilinear (degenerate) elliptic partial differential equations. In the present paper we propose a novel deep neural network algorithm for solving such partial differential equations in high dimensions in order to be able to compute the proposed risk measure in a complex high-dimensional economic environment. The method is based on the correspondence of elliptic partial differential equations to backward stochastic differential equations with unbounded random terminal time. In particular, backward stochastic differential equations—which can be identified with solutions of elliptic partial differential equations—are approximated by means of deep neural networks.


2021 ◽  
Author(s):  
Taylor W Webb ◽  
Kiyofumi Miyoshi ◽  
Tsz Yan So ◽  
Sivananda Rajananda ◽  
Hakwan Lau

Previous work has sought to understand decision confidence as a prediction of the probability that a decision will be correct, leading to debate over whether these predictions are optimal, and whether they rely on the same decision variable as decisions themselves. This work has generally relied on idealized, low-dimensional modeling frameworks, such as signal detection theory or Bayesian inference, leaving open the question of how decision confidence operates in the domain of high-dimensional, naturalistic stimuli. To address this, we developed a deep neural network model optimized to assess decision confidence directly given high-dimensional inputs such as images. The model naturally accounts for a number of puzzling dissociations between decisions and confidence, suggests a principled explanation of these dissociations in terms of optimization for the statistics of sensory inputs, and makes the surprising prediction that, despite these dissociations, decisions and confidence depend on a common decision variable.


Sign in / Sign up

Export Citation Format

Share Document