Enhanced Sparse Subspace Clustering by Manifold Regularization for Hyperspectral Image

Author(s):  
Tongxu Zhou ◽  
Jipan Yang ◽  
Lu Liang
TecnoLógicas ◽  
2019 ◽  
Vol 22 (46) ◽  
pp. 1-14 ◽  
Author(s):  
Jorge Luis Bacca ◽  
Henry Arguello

Spectral image clustering is an unsupervised classification method which identifies distributions of pixels using spectral information without requiring a previous training stage. The sparse subspace clustering-based methods (SSC) assume that hyperspectral images lie in the union of multiple low-dimensional subspaces.  Using this, SSC groups spectral signatures in different subspaces, expressing each spectral signature as a sparse linear combination of all pixels, ensuring that the non-zero elements belong to the same class. Although these methods have shown good accuracy for unsupervised classification of hyperspectral images, the computational complexity becomes intractable as the number of pixels increases, i.e. when the spatial dimension of the image is large. For this reason, this paper proposes to reduce the number of pixels to be classified in the hyperspectral image, and later, the clustering results for the missing pixels are obtained by exploiting the spatial information. Specifically, this work proposes two methodologies to remove the pixels, the first one is based on spatial blue noise distribution which reduces the probability to remove cluster of neighboring pixels, and the second is a sub-sampling procedure that eliminates every two contiguous pixels, preserving the spatial structure of the scene. The performance of the proposed spectral image clustering framework is evaluated in three datasets showing that a similar accuracy is obtained when up to 50% of the pixels are removed, in addition, it is up to 7.9 times faster compared to the classification of the data sets without incomplete pixels.


Author(s):  
Hongyan Zhang ◽  
Han Zhai ◽  
Wenzhi Liao ◽  
Liqin Cao ◽  
Liangpei Zhang ◽  
...  

In this paper, we present a kernel sparse subspace clustering with spatial max pooling operation (KSSC-SMP) algorithm for hyperspectral remote sensing imagery. Firstly, the feature points are mapped from the original space into a higher dimensional space with a kernel strategy. In particular, the sparse subspace clustering (SSC) model is extended to nonlinear manifolds, which can better explore the complex nonlinear structure of hyperspectral images (HSIs) and obtain a much more accurate representation coefficient matrix. Secondly, through the spatial max pooling operation, the spatial contextual information is integrated to obtain a smoother clustering result. Through experiments, it is verified that the KSSC-SMP algorithm is a competitive clustering method for HSIs and outperforms the state-of-the-art clustering methods.


Author(s):  
Yiyang Ding ◽  
Anyong Qin ◽  
Zhaowei Shang ◽  
Jiye Qian

The high dimensionality and heterogeneity of the hyperspectral image (HSI) make a challenge to the application of machine learning methods, such as sparse subspace clustering (SSC). SSC is designed to represent data as an union of affine subspaces, while it cannot capture the latent structure of the given data. In Mosers theory, the distribution can represent the intrinsic structure efficiently. Hence, we propose a novel approach called spatial distribution preserving-based sparse subspace clustering (SSC-SDP) in this paper for HSI data, which can help sparse representation preserve the underlying manifold structure. Specifically, the density constraint is added by minimizing the inconsistency of the densities estimated in the HSI data and the corresponding sparse coefficient matrix. In addition, we incorporate spatial information into the density estimation of the original data, and the optimization solution based on alternating direction method of multipliers (ADMM) is devised. Three HSI data sets are conducted to evaluate the performance of our SSC-SDP compared with other state-of-art algorithms.


Author(s):  
Hongyan Zhang ◽  
Han Zhai ◽  
Wenzhi Liao ◽  
Liqin Cao ◽  
Liangpei Zhang ◽  
...  

In this paper, we present a kernel sparse subspace clustering with spatial max pooling operation (KSSC-SMP) algorithm for hyperspectral remote sensing imagery. Firstly, the feature points are mapped from the original space into a higher dimensional space with a kernel strategy. In particular, the sparse subspace clustering (SSC) model is extended to nonlinear manifolds, which can better explore the complex nonlinear structure of hyperspectral images (HSIs) and obtain a much more accurate representation coefficient matrix. Secondly, through the spatial max pooling operation, the spatial contextual information is integrated to obtain a smoother clustering result. Through experiments, it is verified that the KSSC-SMP algorithm is a competitive clustering method for HSIs and outperforms the state-of-the-art clustering methods.


Author(s):  
Ailin Li ◽  
Anyong Qin ◽  
Zhaowei Shang ◽  
Yuan Yan Tang

Integrating spatial information into the sparse subspace clustering (SSC) models for hyperspectral images (HSIs) is an effective way to improve clustering accuracy. Since HSI is a three-dimensional (3D) cube datum, 3D spectral-spatial filtering becomes a simple method for extracting the spectral-spatial information. In this paper, a novel spectral-spatial SSC framework based on 3D edge-preserving filtering (EPF) is proposed to improve the clustering accuracy of HSI. First, the initial sparse coefficient matrix is obtained in the sparse representation process of the classical SSC model. Then, a 3D EPF is conducted on the initial sparse coefficient matrix to obtain a more accurate coefficient matrix by solving an optimization problem based on ADMM, which is used to build the similarity graph. Finally, the clustering result of HSI data is achieved by applying the spectral clustering algorithm to the similarity graph. Specifically, the filtered matrix can not only capture the spectral-spatial information but the intensity differences. The experimental results on three real-world HSI datasets demonstrated that the potential of including the proposed 3D EPF into the SSC framework can improve the clustering accuracy.


2021 ◽  
Author(s):  
Lili Fan ◽  
Guifu Lu ◽  
Yong Wang ◽  
Tao Liu

Sign in / Sign up

Export Citation Format

Share Document