spectral signature
Recently Published Documents


TOTAL DOCUMENTS

558
(FIVE YEARS 187)

H-INDEX

35
(FIVE YEARS 7)

Author(s):  
Magdalena Kołodziej ◽  
Karolina Chrabąszcz ◽  
Ewa Pięta ◽  
Natalia Piergies ◽  
Julia Rudnicka-Czerwiec ◽  
...  

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 62
Author(s):  
Fatima Omeis ◽  
Zahia Boubegtiten-Fezoua ◽  
Ana Filipa Santos Seica ◽  
Romain Bernard ◽  
Muhammad Haseeb Iqbal ◽  
...  

Surface enhanced infrared absorption spectroscopic studies (SEIRAS) as a technique to study biological molecules in extremely low concentrations is greatly evolving. In order to use the technique for identification of the structure and interactions of such biological molecules, it is necessary to identify the effects of the plasmonic electric-field enhancement on the spectral signature. In this study the spectral properties of 1,2-Dipalmitoyl-sn-glycero-3 phosphothioethanol (DPPTE) phospholipid immobilized on gold nanoantennas, specifically designed to enhance the vibrational fingerprints of lipid molecules were studied. An AFM study demonstrates an organization of the DPPTE phospholipid in bilayers on the nanoantenna structure. The spectral data were compared to SEIRAS active gold surfaces based on nanoparticles, plain gold and plain substrate (Si) for different temperatures. The shape of the infrared signals, the peak positions and their relative intensities were found to be sensitive to the type of surface and the presence of an enhancement. The strongest shifts in position and intensity were seen for the nanoantennas, and a smaller effect was seen for the DPPTE immobilized on gold nanoparticles. This information is crucial for interpretation of data obtained for biological molecules measured on such structures, for future application in nanodevices for biologically or medically relevant samples.


NeuroImage ◽  
2021 ◽  
Vol 244 ◽  
pp. 118616
Author(s):  
Sara Spadone ◽  
Viviana Betti ◽  
Carlo Sestieri ◽  
Vittorio Pizzella ◽  
Maurizio Corbetta ◽  
...  

2021 ◽  
pp. 4208-4217
Author(s):  
Reem Sh. Hameed ◽  
Loay E. Georg ◽  
Baqer H. Sayyid

The Normalization Difference Vegetation Index (NDVI), for many years, was widely used in remote sensing for the detection of vegetation land cover. This index uses red channel radiances (i.e., 0.66 μm reflectance) and near-IR channel (i.e., 0.86 μm reflectance). In the heavy chlorophyll absorption area, the red channel is located, while in the high reflectance plateau of vegetation canopies, the Near-IR channel is situated. Senses of channels (Red & Near- IR) read variance depths over vegetation canopies. In the present study, a further index for vegetation identification is proposed. The normalized difference vegetation shortwave index (NDVSI) is defined as the difference between the cubic bands of Near- IR and Shortwave infrared radiation (SWIR) divided by their sums. The radiances or reflectances are included in this index from the Near-IR channel and WSIR2 channel (2.1 μm). The NDVSI is less sensitivite to atmospheric effects as compared to NDVI. By comparing the one NDVSI index with the two indexes (NDVI, SAVI) of vegetation cover, good correlations were found between NDVI  and NDVSI (R2=0.917) and between SAVI and NDVSI (R2=0.809. Accordingly, the proposed index can be taken into consideration as an independent vegetation index


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1328
Author(s):  
Katrin Stephan ◽  
Mauro Ciarniello ◽  
Olivier Poch ◽  
Bernard Schmitt ◽  
David Haack ◽  
...  

Laboratory measurements were performed to study the spectral signature of H2O ice between 0.4 and 4.2 µm depending on varying temperatures between 70 and 220 K. Spectral parameters of samples with particle sizes up to ~1360 µm, particle size mixtures, and different particle shapes were analyzed. The band depth (BD) of the major H2O-ice absorptions at 1.04, 1.25, 1.5, and 2 µm offers an excellent indicator for varying particle sizes in pure H2O ice. The spectral changes due to temperature rather, but not exclusively, affect the H2O-ice absorptions located at 1.31, 1.57, and 1.65 µm and the Fresnel reflection peaks at 3.1 and 3.2 µm, which strongly weaken with increasing temperature. As the BDs of the H2O-ice absorptions at 1.31, 1.57, and 1.65 µm increase, the band centers (BCs) of the H2O-ice absorptions at 1.25 and 1.5 µm slightly shift to shorter wavelengths. However, the BCs of the strong H2O-ice absorptions can also be affected by saturation in the case of large particles. The collected spectra provide a useful spectral library for future investigations of icy satellites such as Ganymede and Callisto, the major targets of ESA’s JUICE mission.


2021 ◽  
Vol 13 (23) ◽  
pp. 4799
Author(s):  
Daniel Sousa ◽  
Christopher Small

Aquaculture in tropical and subtropical developing countries has expanded in recent years. This practice is controversial due to its potential for serious economic, food security, and environmental impacts—especially for intensive operations in and near mangrove ecosystems, where many shrimp species spawn. While considerable effort has been directed toward understanding aquaculture impacts, maps of spatial extent and multi-decade spatiotemporal dynamics remain sparse. This is in part because aquaculture ponds (ghers) can be challenging to distinguish from other shallow water targets on the basis of water-leaving radiance alone. Here, we focus on the Lower Ganges–Brahmaputra Delta (GBD), one of the most expansive areas of recent aquaculture growth on Earth and adjacent to the Sundarbans mangrove forest, a biodiversity hotspot. We use a combination of MODIS 16-day EVI composites and 45 years (1972–2017) of Landsat observations to characterize dominant spatiotemporal patterns in the vegetation phenology of the area, identify consistent seasonal optical differences between flooded ghers and other land uses, and quantify the multi-decade expansion of standing water bodies. Considerable non-uniqueness exists in the spectral signature of ghers on the GBD, propagating into uncertainty in estimates of spatial extent. We implement three progressive decision boundaries to explicitly quantify this uncertainty and provide liberal, moderate, and conservative estimates of flooded gher extent on three different spatial scales. Using multiple extents and multiple thresholds, we quantify the size distribution of contiguous regions of flooded gher extent at ten-year intervals. The moderate threshold shows standing water area within Bangladeshi polders to have expanded from less than 300 km2 in 1990 to over 1400 km2 in 2015. At all three scales investigated, the size distribution of standing water bodies is increasingly dominated by larger, more interconnected networks of flooded areas associated with aquaculture. Much of this expansion has occurred in immediate proximity to the Bangladeshi Sundarbans.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1292
Author(s):  
Laszlo Rapolti ◽  
Holonec Rodica ◽  
Laura Grindei ◽  
Marius Purcar ◽  
Florin Dragan ◽  
...  

There is nothing new about the fact that higher concentrations (up to 50 times) of valuable materials can be found in e-waste, compared to mined ores. Moreover, the constant accumulation of excessive amounts of waste equipment has a negative impact on the environment. The components found in electronic equipment may contain hazardous materials or materials that could be recycled and reintroduced into production processes, thus reducing the carbon footprint created by waste electrical and electronics equipment (WEEE). Sustainable e-waste recycling requires high-value, integrated recovery systems. By implementing a two-stage experimental sorting stand, this paper proposes an efficient and fast sorting method that can be industrially scaled up to reduce the time, energy and costs needed to sort electronic waste (e-waste). The sorting equipment is in fact an ensemble of sensors consisting of cameras, color sensors, proximity sensors, metal detectors and a hyperspectral camera. The first stage of the system sorts the components based on the materials’ spectral signature by using hyperspectral image (HSI) processing and, with the help of a robotic arm, removes the marked components from the conveyor belt. The second stage of the sorting stand uses a contour vision camera to detect specific shapes of the components to be sorted with the help of pneumatic actuators. The experimental sorting stand is able to distinguish up to five types of components with an efficiency of 89%.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7030
Author(s):  
Eva Matoušková ◽  
Karel Pavelka ◽  
Saleem Ibrahim

Historic object analysis and the knowledge of composition play an important role in restoration processes. Based on this information, restoration works are conducted. This paper introduces a non-invasive technique of plaster and mortar material decomposition using reflectance spectroscopy. For this purpose, a NIRQuest512-2,5 from Ocean Optics®/Ocean Insight®, is used to create a unique spectral library consisting of various materials. They were carefully selected to include those that were and still are commonly used for a plaster and mortar production. Each material of the spectral library was mapped in detail, verified using scanning electronic microscope (SEM) data, and the results were compared to a previously determined spectral signature. The new spectral library was then tested on 11 unknown plaster and mortar samples and verified using a scanning electronic microscope. It was found that reflectance spectroscopy provides a powerful tool for plaster and mortar material decomposition, although at the moment it cannot fully replace invasive techniques like chemical analyses or other invasive techniques. It provides relevant information that can be used for restoration works.


2021 ◽  
Author(s):  
Didem Taşcıoğlu ◽  
Arda Atçı ◽  
Seçil SEVİM ÜNLÜTÜRK ◽  
Serdar Ozcelik

Abstract Counterfeiting is a growing economic and social problem. For anticounterfeiting, random and inimitable droplet/fiber patterns were created by the electrospinning method as security tags that are detectable under UV light but invisible in daylight. To check the authenticity of the original security patterns created; images were collected with a simple smartphone microscope and a database of the recorded original patterns was created. The originality of the random patterns was checked by comparing them with the patterns recorded in the database. In addition, the spectral signature of the patterns in the droplet/fiber network was obtained with a simple and hand-held spectrometer. Thus, by reading the spectral signature from the pattern, the spectral information of the photoluminescent nanoparticles was verified and thus a second-step verification was established. In this way, anticounterfeiting technology that combines ink formula, unclonable security pattern creation and two-level verification is developed.


Sign in / Sign up

Export Citation Format

Share Document