scholarly journals Jointly Learning Representations of Nodes and Attributes for Attributed Networks

2020 ◽  
Vol 38 (2) ◽  
pp. 1-32 ◽  
Author(s):  
Zaiqiao Meng ◽  
Shangsong Liang ◽  
Xiangliang Zhang ◽  
Richard McCreadie ◽  
Iadh Ounis
Keyword(s):  
2021 ◽  
Vol 63 (5) ◽  
pp. 1221-1239
Author(s):  
Yu Ding ◽  
Hao Wei ◽  
Guyu Hu ◽  
Zhisong Pan ◽  
Shuaihui Wang

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yuye Wang ◽  
Jing Yang ◽  
Jianpei Zhan

Vertex attributes exert huge impacts on the analysis of social networks. Since the attributes are often sensitive, it is necessary to seek effective ways to protect the privacy of graphs with correlated attributes. Prior work has focused mainly on the graph topological structure and the attributes, respectively, and combining them together by defining the relevancy between them. However, these methods need to add noise to them, respectively, and they produce a large number of required noise and reduce the data utility. In this paper, we introduce an approach to release graphs with correlated attributes under differential privacy based on early fusion. We combine the graph topological structure and the attributes together with a private probability model and generate a synthetic network satisfying differential privacy. We conduct extensive experiments to demonstrate that our approach could meet the request of attributed networks and achieve high data utility.


Author(s):  
Jundong Li ◽  
Harsh Dani ◽  
Xia Hu ◽  
Huan Liu

Attributed networks are pervasive in different domains, ranging from social networks, gene regulatory networks to financial transaction networks. This kind of rich network representation presents challenges for anomaly detection due to the heterogeneity of two data representations. A vast majority of existing algorithms assume certain properties of anomalies are given a prior. Since various types of anomalies in real-world attributed networks co-exist, the assumption that priori knowledge regarding anomalies is available does not hold. In this paper, we investigate the problem of anomaly detection in attributed networks generally from a residual analysis perspective, which has been shown to be effective in traditional anomaly detection problems. However, it is a non-trivial task in attributed networks as interactions among instances complicate the residual modeling process. Methodologically, we propose a learning framework to characterize the residuals of attribute information and its coherence with network information for anomaly detection. By learning and analyzing the residuals, we detect anomalies whose behaviors are singularly different from the majority. Experiments on real datasets show the effectiveness and generality of the proposed framework.


2021 ◽  
Vol 30 (4) ◽  
pp. 441-455
Author(s):  
Rinat Aynulin ◽  
◽  
Pavel Chebotarev ◽  
◽  

Proximity measures on graphs are extensively used for solving various problems in network analysis, including community detection. Previous studies have considered proximity measures mainly for networks without attributes. However, attribute information, node attributes in particular, allows a more in-depth exploration of the network structure. This paper extends the definition of a number of proximity measures to the case of attributed networks. To take node attributes into account, attribute similarity is embedded into the adjacency matrix. Obtained attribute-aware proximity measures are numerically studied in the context of community detection in real-world networks.


2022 ◽  
Vol 40 (3) ◽  
pp. 1-36
Author(s):  
Jinyuan Fang ◽  
Shangsong Liang ◽  
Zaiqiao Meng ◽  
Maarten De Rijke

Network-based information has been widely explored and exploited in the information retrieval literature. Attributed networks, consisting of nodes, edges as well as attributes describing properties of nodes, are a basic type of network-based data, and are especially useful for many applications. Examples include user profiling in social networks and item recommendation in user-item purchase networks. Learning useful and expressive representations of entities in attributed networks can provide more effective building blocks to down-stream network-based tasks such as link prediction and attribute inference. Practically, input features of attributed networks are normalized as unit directional vectors. However, most network embedding techniques ignore the spherical nature of inputs and focus on learning representations in a Gaussian or Euclidean space, which, we hypothesize, might lead to less effective representations. To obtain more effective representations of attributed networks, we investigate the problem of mapping an attributed network with unit normalized directional features into a non-Gaussian and non-Euclidean space. Specifically, we propose a hyperspherical variational co-embedding for attributed networks (HCAN), which is based on generalized variational auto-encoders for heterogeneous data with multiple types of entities. HCAN jointly learns latent embeddings for both nodes and attributes in a unified hyperspherical space such that the affinities between nodes and attributes can be captured effectively. We argue that this is a crucial feature in many real-world applications of attributed networks. Previous Gaussian network embedding algorithms break the assumption of uninformative prior, which leads to unstable results and poor performance. In contrast, HCAN embeds nodes and attributes as von Mises-Fisher distributions, and allows one to capture the uncertainty of the inferred representations. Experimental results on eight datasets show that HCAN yields better performance in a number of applications compared with nine state-of-the-art baselines.


Author(s):  
Harshay Shah ◽  
Suhansanu Kuma ◽  
Hari Sundaram
Keyword(s):  

2019 ◽  
Vol 50 (2) ◽  
pp. 354-364 ◽  
Author(s):  
Huimin Huang ◽  
Hong Shen ◽  
Zaiqiao Meng

Sign in / Sign up

Export Citation Format

Share Document