scholarly journals Radar: Residual Analysis for Anomaly Detection in Attributed Networks

Author(s):  
Jundong Li ◽  
Harsh Dani ◽  
Xia Hu ◽  
Huan Liu

Attributed networks are pervasive in different domains, ranging from social networks, gene regulatory networks to financial transaction networks. This kind of rich network representation presents challenges for anomaly detection due to the heterogeneity of two data representations. A vast majority of existing algorithms assume certain properties of anomalies are given a prior. Since various types of anomalies in real-world attributed networks co-exist, the assumption that priori knowledge regarding anomalies is available does not hold. In this paper, we investigate the problem of anomaly detection in attributed networks generally from a residual analysis perspective, which has been shown to be effective in traditional anomaly detection problems. However, it is a non-trivial task in attributed networks as interactions among instances complicate the residual modeling process. Methodologically, we propose a learning framework to characterize the residuals of attribute information and its coherence with network information for anomaly detection. By learning and analyzing the residuals, we detect anomalies whose behaviors are singularly different from the majority. Experiments on real datasets show the effectiveness and generality of the proposed framework.

2019 ◽  
Vol 17 (03) ◽  
pp. 1950018
Author(s):  
Jamshid Pirgazi ◽  
Ali Reza Khanteymoori ◽  
Maryam Jalilkhani

In this study, in order to deal with the noise and uncertainty in gene expression data, learning networks, especially Bayesian networks, that have the ability to use prior knowledge, were used to infer gene regulatory network. Learning networks are methods that have the structure of the network and a learning process to obtain relationships. One of the methods which have been used for measuring the relationship between genes is the correlation metrics, but the high correlated genes not necessarily mean that they have causal effect on each other. Studies on common methods in inference of gene regulatory networks are yet to pay attention to their biological importance and as such, predictions by these methods are less accurate in terms of biological significance. Hence, in the proposed method, genes with high correlation were identified in one cluster using clustering, and the existence of edge between the genes in the cluster was prevented. Finally, after the Bayesian network modeling, based on knowledge gained from clustering, the refining phase and improving regulatory interactions using biological correlation were done. In order to show the efficiency, the proposed method has been compared with several common methods in this area including GENIE3 and BMALR. The results of the evaluation indicate that the proposed method recognized regulatory relations in Bayesian modeling process well, due to using of biological knowledge which is hidden in the data collection, and is able to recognize gene regulatory networks align with important methods in this field.


Sign in / Sign up

Export Citation Format

Share Document