Concurrent weight encoding-based detection for bit-flip attack on neural network accelerators

Author(s):  
Qi Liu ◽  
Wujie Wen ◽  
Yanzhi Wang
Keyword(s):  
Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 310 ◽  
Author(s):  
Xiaotong Ni

We still do not have perfect decoders for topological codes that can satisfy all needs of different experimental setups. Recently, a few neural network based decoders have been studied, with the motivation that they can adapt to a wide range of noise models, and can easily run on dedicated chips without a full-fledged computer. The later feature might lead to fast speed and the ability to operate at low temperatures. However, a question which has not been addressed in previous works is whether neural network decoders can handle 2D topological codes with large distances. In this work, we provide a positive answer for the toric code \cite{Kitaev2003Faulttolerantanyon}. The structure of our neural network decoder is inspired by the renormalization group decoder \cite{duclos2010fast, duclos2013fault}. With a fairly strict policy on training time, when the bit-flip error rate is lower than 9% and syndrome extraction is perfect, the neural network decoder performs better when code distance increases. With a less strict policy, we find it is not hard for the neural decoder to achieve a performance close to the minimum-weight perfect matching algorithm. The numerical simulation is done up to code distance d=64. Last but not least, we describe and analyze a few failed approaches. They guide us to the final design of our neural decoder, but also serve as a caution when we gauge the versatility of stock deep neural networks. The source code of our neural decoder can be found at \cite{sourcecodegithub}.


2000 ◽  
Vol 25 (4) ◽  
pp. 325-325
Author(s):  
J.L.N. Roodenburg ◽  
H.J. Van Staveren ◽  
N.L.P. Van Veen ◽  
O.C. Speelman ◽  
J.M. Nauta ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 502-503
Author(s):  
Mohamed A. Gomha ◽  
Khaled Z. Sheir ◽  
Saeed Showky ◽  
Khaled Madbouly ◽  
Emad Elsobky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document