Performance Evaluation and Improvement of Real-Time Computer Vision Applications for Edge Computing Devices

Author(s):  
Julian Gutierrez ◽  
Nicolas Bohm Agostini ◽  
David Kaeli
2008 ◽  
Vol 08 (01) ◽  
pp. 135-155 ◽  
Author(s):  
JONATHAN FABRIZIO ◽  
JEAN DEVARS

The Perspective-N-Point problem (PNP) is a notable problem in computer vision. It consists of given N points known in an object coordinate space and their projection onto the image, estimating the distance between the video camera and the set of points. By the use of an unusual formulation, we propose a method to get a strictly analytical solution based on the resolution of linear systems. This solution can be computed instantly and is well adapted to real time computer vision applications. Our approach is general enough to work with a nonlinear sensor like a catadioptric panoramic sensor. To improve the localization accuracy, we also provide a technique to correct geometrical distortion. This algorithm also corrects little errors on intrinsic and extrinsic parameters. Well implemented, this correction can be performed in real time.


2021 ◽  
Vol 2021 (1) ◽  
pp. 43-48
Author(s):  
Mekides Assefa Abebe

Exposure problems, due to standard camera sensor limitations, often lead to image quality degradations such as loss of details and change in color appearance. The quality degradations further hiders the performances of imaging and computer vision applications. Therefore, the reconstruction and enhancement of uderand over-exposed images is essential for various applications. Accordingly, an increasing number of conventional and deep learning reconstruction approaches have been introduced in recent years. Most conventional methods follow color imaging pipeline, which strongly emphasize on the reconstructed color and content accuracy. The deep learning (DL) approaches have conversely shown stronger capability on recovering lost details. However, the design of most DL architectures and objective functions don’t take color fidelity into consideration and, hence, the analysis of existing DL methods with respect to color and content fidelity will be pertinent. Accordingly, this work presents performance evaluation and results of recent DL based overexposure reconstruction solutions. For the evaluation, various datasets from related research domains were merged and two generative adversarial networks (GAN) based models were additionally adopted for tone mapping application scenario. Overall results show various limitations, mainly for severely over-exposed contents, and a promising potential for DL approaches, GAN, to reconstruct details and appearance.


Sign in / Sign up

Export Citation Format

Share Document