Integrated Hardware Garbage Collection

2021 ◽  
Vol 20 (5) ◽  
pp. 1-25
Author(s):  
Andrés Amaya García ◽  
David May ◽  
Ed Nutting

Garbage collected programming languages, such as Python and C#, have accelerated software development. These modern languages increase productivity and software reliability as they provide high-level data representation and control structures. Modern languages are widely used in software development for mobile, desktop, and server devices, but their adoption is limited in real-time embedded systems. There is clear interest in supporting modern languages in embedded devices as emerging markets, like the Internet of Things, demand ever smarter and more reliable products. Multiple commercial and open-source projects, such as Zerynth and MicroPython, are attempting to provide support. But these projects rely on software garbage collectors that impose high overheads and introduce unpredictable pauses, preventing their use in many embedded applications. These limitations arise from the unsuitability of conventional processors for performing efficient, predictable garbage collection. We propose the Integrated Hardware Garbage Collector (IHGC); a garbage collector tightly coupled with the processor that runs continuously in the background. Further, we introduce a static analysis technique to guarantee that real-time programs are never paused by the collector. Our design allocates a memory cycle to the collector when the processor is not using the memory. The IHGC achieves this by careful division of collection work into single-memory-access steps that are interleaved with the processor’s memory accesses. As a result, our collector eliminates run-time overheads and enables real-time program analysis. The principles behind the IHGC can be used in conjunction with existing architectures. For example, we simulated the IHGC alongside the ARMv6-M architecture. Compared to a conventional processor, our experiments indicate that the IHGC offers 1.5–7 times better performance for programs that rely on garbage collection. The IHGC delivers the benefits of garbage-collected languages with real-time performance but without the complexity and overheads inherent in software collectors.

1990 ◽  
Vol 2 (4) ◽  
pp. 365-382 ◽  
Author(s):  
Wolfgang A. Halang ◽  
Alexander D. Stoyenko

2021 ◽  
Author(s):  
◽  
Stephen Frank Nelson

<p>Freshly created objects are a blank slate: their mutable state and their constant properties must be initialised before they can be used. Programming languages like Java typically support object initialisation by providing constructor methods. This thesis examines the actual initialisation of objects in real-world programs to determine whether constructor methods support the initialisation that programmers actually perform. Determining which object initialisation techniques are most popular and how they can be identified will allow language designers to better understand the needs of programmers, and give insights that VM designers could use to optimise the performance of language implementations, reduce memory consumption, and improve garbage collection behaviour. Traditional profiling typically either focuses on timing, or uses sampling or heap snapshots to approximate whole program analysis. Classifying the behaviour of objects throughout their lifetime requires analysis of all program behaviour without approximation. This thesis presents two novel whole-program object profilers: one using purely class modification (#prof ), and a hybrid approach utilising class modification and JVM support (rprof ). #prof modifies programs using aspect-oriented programming tools to generate and aggregate data and examines objects that enter different collections to determine whether correlation exists between initialisation behaviour and the use of equality operators and collections. rprof confirms the results of an existing static analysis study of field initialisation using runtime analysis, and provides a novel study of object initialisation behaviour patterns.</p>


2020 ◽  
Author(s):  
Marcelo Barros de Azevedo Vieira ◽  
Sérgio Teixeira Carvalho ◽  
Fabio Moreira Costa ◽  
David Bromberg

Recent years have seen the inception of many domain-specific modelling languages, enabling to overcome some of the main difficulties found in software development. The use of models has a particular impact on the implementation phase, as models tend to be closer to the problems to be solved than code. This paves the way to enable application construction by non-experts in software development, such as domain specialists. In this paper, we exploit the use of models in the domain of real-time communication, which poses significant challenges for application construction due to the multitude and intricacy of the technologies involved. We propose RBCML, a communication modelling language for the high-level specification of real-time communication sessions based on the roles that users play in the sessions. The language is processed using a combination of partial code generation and dynamic model interpretation, resulting in the construction of fully functional communication applications. The paper describes RBCML and its implementation on top of W3C’s Web Real-Time Communication protocols (WebRTC). An evaluation is presented to compare the use of RBCML with code-based development and to characterize the performance of communication session establishment using the language.


2019 ◽  
Vol 13 ◽  
pp. 359-365
Author(s):  
Igor Kopeć ◽  
Jakub Smołka

In programming languages with automatic memory management garbage collection plays an important role of cleaning unused memory. Garbage collection algorithms have been developed for many years and aim to maximize the application’s performance. This paper presents and compares a performance of five garbage collection algorithms present in current version of Java 12 in three applications with different object lifetime span. The analysis covered the system responsiveness, garbage collector workload and application throughput at high application load.


2017 ◽  
Vol 14 (4) ◽  
pp. 117-125
Author(s):  
G. N. Isaeva ◽  
N. N. Teodorovich ◽  
Y. Y. Sidorov

The main directions of the development of modern high-level programming languages (HL PL) and their evolutionary development are considered in the article. The statistics are presented for the HL PL, which are key in the framework of various programming paradigms, based on the data of modern electronic resources. A tendency is shown to obliterate the boundaries between the strict classification of the HL PL, as belonging to different computational models underlying the development of the language. It is shown that the main reason for the popularity of scripting languages and languages of reactive programming is related to the scale of solved economic problems, the mass coverage of all spheres of the economy by network structures, and also the desire of developers to have a simple, understandable and universal software development tool.


2021 ◽  
Author(s):  
◽  
Stephen Frank Nelson

<p>Freshly created objects are a blank slate: their mutable state and their constant properties must be initialised before they can be used. Programming languages like Java typically support object initialisation by providing constructor methods. This thesis examines the actual initialisation of objects in real-world programs to determine whether constructor methods support the initialisation that programmers actually perform. Determining which object initialisation techniques are most popular and how they can be identified will allow language designers to better understand the needs of programmers, and give insights that VM designers could use to optimise the performance of language implementations, reduce memory consumption, and improve garbage collection behaviour. Traditional profiling typically either focuses on timing, or uses sampling or heap snapshots to approximate whole program analysis. Classifying the behaviour of objects throughout their lifetime requires analysis of all program behaviour without approximation. This thesis presents two novel whole-program object profilers: one using purely class modification (#prof ), and a hybrid approach utilising class modification and JVM support (rprof ). #prof modifies programs using aspect-oriented programming tools to generate and aggregate data and examines objects that enter different collections to determine whether correlation exists between initialisation behaviour and the use of equality operators and collections. rprof confirms the results of an existing static analysis study of field initialisation using runtime analysis, and provides a novel study of object initialisation behaviour patterns.</p>


Sign in / Sign up

Export Citation Format

Share Document