Parallel shadow execution to accelerate the debugging of numerical errors

2021 ◽  
Author(s):  
Sangeeta Chowdhary ◽  
Santosh Nagarakatte
Keyword(s):  
1966 ◽  
Vol 25 ◽  
pp. 266-267
Author(s):  
R. L. Duncombe

An examination of some specialized lunar and planetary ephemerides has revealed inconsistencies in the adopted planetary masses, the presence of non-gravitational terms, and some outright numerical errors. They should be considered of temporary usefulness only, subject to subsequent amendment as required for the interpretation of observational data.


Algorithms ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 178
Author(s):  
Sebastian Plamowski ◽  
Richard W Kephart

The paper addresses issues associated with implementing GPC controllers in systems with multiple input signals. Depending on the method of identification, the resulting models may be of a high order and when applied to a control/regulation law, may result in numerical errors due to the limitations of representing values in double-precision floating point numbers. This phenomenon is to be avoided, because even if the model is correct, the resulting numerical errors will lead to poor control performance. An effective way to identify, and at the same time eliminate, this unfavorable feature is to reduce the model order. A method of model order reduction is presented in this paper that effectively mitigates these issues. In this paper, the Generalized Predictive Control (GPC) algorithm is presented, followed by a discussion of the conditions that result in high order models. Examples are included where the discussed problem is demonstrated along with the subsequent results after the reduction. The obtained results and formulated conclusions are valuable for industry practitioners who implement a predictive control in industry.


Author(s):  
Jose Antonio Lozano Galant ◽  
Maria Nogal ◽  
Jun Lei ◽  
Dong Xu ◽  
José Turmo

Observability techniques enable the structural system identification of static structures from a symbolic approach. The main advantage of this method is its deep mathematical foundation that enables the definition of parametric equations for the estimates. Nevertheless, this symbolic approach is not enough for the application of this method on actual structures. To fill this gap, this article presents the introduction into the symbolic structural system identification by observability techniques of a new numerical approach. This application includes the development of an algorithm that reduces the unavoidable numerical errors produced by the lack of precision of computers. The comparison of the observability technique with other existing methods presented in the literature shows that the number of required measurements is significantly lower. Furthermore, contrary to other analysed methods, no information from the undamaged structure is required.


Author(s):  
George Rawitscher ◽  
Victo dos Santos Filho ◽  
Thiago Carvalho Peixoto
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document