mathematical foundation
Recently Published Documents


TOTAL DOCUMENTS

287
(FIVE YEARS 64)

H-INDEX

23
(FIVE YEARS 2)

2022 ◽  
Vol 6 (POPL) ◽  
pp. 1-29
Author(s):  
Marcelo Fiore ◽  
Dmitrij Szamozvancev

Despite extensive research both on the theoretical and practical fronts, formalising, reasoning about, and implementing languages with variable binding is still a daunting endeavour – repetitive boilerplate and the overly complicated metatheory of capture-avoiding substitution often get in the way of progressing on to the actually interesting properties of a language. Existing developments offer some relief, however at the expense of inconvenient and error-prone term encodings and lack of formal foundations. We present a mathematically-inspired language-formalisation framework implemented in Agda. The system translates the description of a syntax signature with variable-binding operators into an intrinsically-encoded, inductive data type equipped with syntactic operations such as weakening and substitution, along with their correctness properties. The generated metatheory further incorporates metavariables and their associated operation of metasubstitution, which enables second-order equational/rewriting reasoning. The underlying mathematical foundation of the framework – initial algebra semantics – derives compositional interpretations of languages into their models satisfying the semantic substitution lemma by construction.


2021 ◽  
Vol 4 (4) ◽  

Superposed wavefunctions in quantum mechanics lead to a squared amplitude that introduces interference into a probability density, which has long been a puzzle because interference between probability densities exists nowhere else in probability theory. In recent years, Man’ko and coauthors have successfully reconciled quantum and classic probability using a symplectic tomographic model. Nevertheless, there remains an unexplained coincidence in quantum mechanics, namely, that mathematically, the interference term in the squared amplitude of superposed wavefunctions gives the squared amplitude the form of a variance of a sum of correlated random variables, and we examine whether there could be an archetypical variable behind quantum probability that provides a mathematical foundation that observes both quantum and classic probability directly. The properties that would need to be satisfied for this to be the case are identified, and a generic hidden variable that satisfies them is found that would be present everywhere, transforming into a process-specific variable wherever a quantum process is active. Uncovering this variable confirms the possibility that it could be the stochastic archetype of quantum probability


2021 ◽  
Vol 34 (4) ◽  
pp. 420-428
Author(s):  
Stephen J. Crothers

Albert Einstein first presented his gravitational field equations in unimodular coordinates. In these coordinates, the field equations can be written explicitly in terms of the Einstein pseudotensor for the energy-momentum of the gravitational field. Since this pseudotensor produces, by contraction, a first-order intrinsic differential invariant, it violates the laws of pure mathematics. This is sufficient to prove that Einstein’s unimodular field equations are invalid. Since the unimodular form must hold in the general theory of relativity, it follows that the latter is also physically and mathematically unsound, lacking a proper mathematical foundation.


2021 ◽  
Author(s):  
Tim C Jenkins

Abstract Superposed wavefunctions in quantum mechanics lead to a squared amplitude that introduces interference into a probability density, which has long been a puzzle because interference between probability densities exists nowhere else in probability theory. In recent years, Man’ko and coauthors have successfully reconciled quantum and classic probability using a symplectic tomographic model. Nevertheless, there remains an unexplained coincidence in quantum mechanics, namely, that mathematically, the interference term in the squared amplitude of superposed wavefunctions gives the squared amplitude the form of a variance of a sum of correlated random variables, and we examine whether there could be an archetypical variable behind quantum probability that provides a mathematical foundation that observes both quantum and classic probability directly. The properties that would need to be satisfied for this to be the case are identified, and a generic hidden variable that satisfies them is found that would be present everywhere, transforming into a process-specific variable wherever a quantum process is active. Uncovering this variable confirms the possibility that it could be the stochastic archetype of quantum probability.


2021 ◽  
Author(s):  
Tim C Jenkins

Abstract Superposed wavefunctions in quantum mechanics lead to a squared amplitude that introduces interference into a probability density, which has long been a puzzle because interference between probability densities exists nowhere else in probability theory. In recent years, Man’ko and coauthors have successfully reconciled quantum and classic probability using a symplectic tomographic model. Nevertheless, there remains an unexplained coincidence in quantum mechanics, namely, that mathematically, the interference term in the squared amplitude of superposed wavefunctions gives the squared amplitude the form of a variance of a sum of correlated random variables, and we examine whether there could be an archetypical variable behind quantum probability that provides a mathematical foundation that observes both quantum and classic probability directly. The properties that would need to be satisfied for this to be the case are identified, and a generic hidden variable that satisfies them is found that would be present everywhere, transforming into a process-specific variable wherever a quantum process is active. Uncovering this variable confirms the possibility that it could be the stochastic archetype of quantum probability.


2021 ◽  
Vol 37 (6) ◽  
pp. 596-600
Author(s):  
James S. Walton

In 1967, as an undergraduate gymnast, I developed an interest in the mechanics of twisting somersaults. In 1969, after expressing a desire to measure and model human motion in a doctoral program, I was advised that Dr Richard “Dick” Nelson was starting a unique program in biomechanics of sport at Penn State University. In September 1970, I was the fourth or fifth doctoral student to join the new program. In 1972, I photographed a cluster of 18 golf balls hung from a 4′ × 8′ sheet of plywood in Dick’s new biomechanics laboratory. The question: “Could I create a 3-dimensional scale that would allow me to locate these golf balls in 3 dimensions?” From these early beginnings, I went on to develop the mathematical foundation for “motion capture” and a career as an entrepreneur and scientist working in a very wide variety of industrial environments in the United States and abroad. Much of my success can be traced back to the 4 years I spent on the Penn State campus. Dick’s efforts in the late 60s and his persistence in the early 70s, and later, were instrumental in creating a new discipline: “Biomechanics of Sport.” Dick: Thank you.


2021 ◽  
Vol 26 (jai2021.26(2)) ◽  
pp. 111-119
Author(s):  
Ashursky E ◽  
◽  

To date the recognition of universal, a priori inherent in them connection between the objects of the world around us is quite rightly considered almost an accomplished fact. But on what laws do these or those sometimes rather variegated systems function in live and inert nature (including - in modern computer clusters)? Where are the origins of their self-organization activity lurked: whether at the level of still hypothetical quantum-molecular models, finite bio-automata or hugely fashionable now artificial neural networks? Answers to all these questions if perhaps will ever appear then certainly not soon. That is why the bold innovative developments presented in following article are capable in something, possibly, even to refresh the database of informatics so familiar to many of us. And moreover, in principle, the pivotal idea developed here, frankly speaking, is quite simple in itself: if, for example, the laws of the universe are one, then all the characteristic differences between any evolving objects should be determined by their outwardly-hidden informative (or, according to author’s terminology - “mental") rationale. By the way, these are not at all empty words, as it might seem at first glance, because they are fully, where possible, supported with the generally accepted physical & mathematical foundation here. So as a result, the reader by himself comes sooner or later to the inevitable conclusion, to wit: only the smallest electron-neutrino ensembles contain everything the most valuable and meaningful for any natural system! At that even no matter, what namely global outlook paradigm we here hold


2021 ◽  
Author(s):  
Tim C Jenkins

Abstract Superposed wavefunctions in quantum mechanics lead to a squared amplitude that introduces interference into a probability density, which has long been a puzzle because interference between probability densities exists nowhere else in probability theory. In recent years, Man’ko and coauthors have successfully reconciled quantum and classic probability using a symplectic tomographic model. Nevertheless, there remains an unexplained coincidence in quantum mechanics, namely, that mathematically, the interference term in the squared amplitude of superposed wavefunctions gives the squared amplitude the form of a variance of a sum of correlated random variables, and we examine whether there could be an archetypical variable behind quantum probability that provides a mathematical foundation that observes both quantum and classic probability directly. The properties that would need to be satisfied for this to be the case are identified, and a generic hidden variable that satisfies them is found that would be present everywhere, transforming into a process-specific variable wherever a quantum process is active. Uncovering this variable confirms the possibility that it could be the stochastic archetype of quantum probability.


2021 ◽  
Author(s):  
Tim C Jenkins

Abstract Superposed wavefunctions in quantum mechanics lead to a squared amplitude that introduces interference into a probability density, which has long been a puzzle because interference between probability densities exists nowhere else in probability theory. In recent years, Man’ko and coauthors have successfully reconciled quantum and classic probability using a symplectic tomographic model. Nevertheless, there remains an unexplained coincidence in quantum mechanics, namely, that mathematically, the interference term in the squared amplitude of superposed wavefunctions gives the squared amplitude the form of a variance of a sum of correlated random variables, and we examine whether there could be an archetypical variable behind quantum probability that provides a mathematical foundation that observes both quantum and classic probability directly. The properties that would need to be satisfied for this to be the case are identified, and a generic hidden variable that satisfies them is found that would be present everywhere, transforming into a process-specific variable wherever a quantum process is active. Uncovering this variable confirms the possibility that it is the stochastic archetype of quantum probability.


2021 ◽  
Author(s):  
Tim C Jenkins

Abstract Superposed wavefunctions in quantum mechanics lead to a squared amplitude that introduces interference into a probability density, which has long been a puzzle because interference between probability densities exists nowhere else in probability theory. In recent years, Man’ko and coauthors have successfully reconciled quantum and classic probability using a symplectic tomographic model. Nevertheless, there remains an unexplained coincidence in quantum mechanics, namely, that mathematically, the interference term in the squared amplitude of superposed wavefunctions has the form of a variance of a sum of correlated random variables, and we examine whether there could be an archetypical variable behind quantum probability that provides a mathematical foundation that observes both quantum and classic probability directly. The properties that would need to be satisfied for this to be the case are identified, and a generic hidden variable that satisfies them is found that would be present everywhere, transforming into a process-specific variable wherever a quantum process is active. Uncovering this variable confirms the possibility that it is the stochastic archetype of quantum probability.


Sign in / Sign up

Export Citation Format

Share Document