Two Birds With One Stone: Boosting Both Search and Write Performance for Tree Indices on Persistent Memory

2021 ◽  
Vol 20 (5s) ◽  
pp. 1-25
Author(s):  
Yongping Luo ◽  
Peiquan Jin ◽  
Zhou Zhang ◽  
Junchen Zhang ◽  
Bin Cheng ◽  
...  

The advance of byte-addressable persistent memory (PM) makes it a hot topic to revisit traditional tree indices such as B+-tree and radix tree, and a few new persistent memory-friendly tree indices have been proposed. However, due to the special features of persistent memory compared to DRAM and the limitations of B+-tree-like indices, it is much harder to optimize both search and write performance for tree indices on persistent memory. As a result, most existing indices for persistent memory, e.g., WB-tree, proposed to improve write performance while sacrificing search performance. Aiming to optimize both write and search performance for tree indices on persistent memory, in this paper, we first propose a novel Two-Layer Architecture (TLA) for constructing tree indices on persistent memory. The key idea, of TLA is to organize the index with a search-optimized top layer and a write-optimized bottom layer, letting the top layer optimize search performance and the bottom layer improve write performance. By adopting efficient structures for the two layers, TLA can boost both write and search performance for tree indices on persistent memory. Following the TLA architecture, we present a new index called TLBtree (Two-Layer B+-tree) offering high search and write performance for persistent memory. Moreover, we develop a concurrent TLBtree to support non-blocking read operations in multi-core environment. We evaluate our proposals under a server equipped with real Intel Optane persistent memory. The results show that TLBtree outperforms the state-of-the-art tree indices, including WB-tree, Fast&Fair, and FPTree, in both search and write performance. Also, the concurrent TLBtree can achieve up to 3.7x speedup than its competitors under the multi-core environment.

Author(s):  
T. A. Welton

Various authors have emphasized the spatial information resident in an electron micrograph taken with adequately coherent radiation. In view of the completion of at least one such instrument, this opportunity is taken to summarize the state of the art of processing such micrographs. We use the usual symbols for the aberration coefficients, and supplement these with £ and 6 for the transverse coherence length and the fractional energy spread respectively. He also assume a weak, biologically interesting sample, with principal interest lying in the molecular skeleton remaining after obvious hydrogen loss and other radiation damage has occurred.


2003 ◽  
Vol 48 (6) ◽  
pp. 826-829 ◽  
Author(s):  
Eric Amsel
Keyword(s):  

1968 ◽  
Vol 13 (9) ◽  
pp. 479-480
Author(s):  
LEWIS PETRINOVICH
Keyword(s):  

1984 ◽  
Vol 29 (5) ◽  
pp. 426-428
Author(s):  
Anthony R. D'Augelli

1991 ◽  
Vol 36 (2) ◽  
pp. 140-140
Author(s):  
John A. Corson
Keyword(s):  

1989 ◽  
Vol 28 (04) ◽  
pp. 270-272 ◽  
Author(s):  
O. Rienhoff

Abstract:The state of the art is summarized showing many efforts but only few results which can serve as demonstration examples for developing countries. Education in health informatics in developing countries is still mainly dealing with the type of health informatics known from the industrialized world. Educational tools or curricula geared to the matter of development are rarely to be found. Some WHO activities suggest that it is time for a collaboration network to derive tools and curricula within the next decade.


Sign in / Sign up

Export Citation Format

Share Document