Application of Genetic Algorithm in Truss Optimization with Interval Variables

2021 ◽  
Author(s):  
ChunYan Pei ◽  
YingShuang Zhang
2021 ◽  
Vol 343 ◽  
pp. 04004
Author(s):  
Nenad Petrović ◽  
Nenad Kostić ◽  
Vesna Marjanović ◽  
Ileana Ioana Cofaru ◽  
Nenad Marjanović

Truss optimization has the goal of achieving savings in costs and material while maintaining structural characteristics. In this research a 10 bar truss was structurally optimized in Rhino 6 using genetic algorithm optimization method. Results from previous research where sizing optimization was limited to using only three different cross-sections were compared to a sizing and shape optimization model which uses only those three cross-sections. Significant savings in mass have been found when using this approach. An analysis was conducted of the necessary bill of materials for these solutions. This research indicates practical effects which optimization can achieve in truss design.


2018 ◽  
Vol 5 (1) ◽  
pp. 61-70 ◽  
Author(s):  
Akshay Kumar ◽  
H K Rangavittal

The Genetic Algorithm is one of the advanced optimization techniques frequently used for solving complex problems in the research field, and there are plenty of parameters which affect the outcome of the GA. In this study, a 25-bar truss with the nonlinear constraint is chosen with the objective to minimize the mass and variables being the discrete area. For the same, GA parameter like Selection Function, Population Size, Crossover Function, and Creation Function are varied to find the best combination with minimum function evaluation. It is found that the Uniform selection gives the best result irrespective of the creation function, population size or crossover functions. But this is at the cost of a large number of function evaluations, and the other selection function fails to reach the global optimum and has a smaller number of function evaluation count. If the analysis of selection function is done one at a time, it is seen that all Cases performs better in Roulette but, Case A which is non-integer type with 200 population size being computationally cheaper than Case B and C of population size 300. In the Tournament selection, Case A, B with smaller population size and Case C with higher population size performs better. Case C performs better at Remainder selection with smaller population size, and Case A and B for Stochastic Uniform with higher population size. And, it is clear that the function evaluation count increases with the population size in every Case from this study.


2020 ◽  
Vol 17 (10) ◽  
pp. 2050007
Author(s):  
Guiping Liu ◽  
Rui Luo ◽  
Sheng Liu

In this paper, a new interval multi-objective optimization (MOO) method integrating with the multidimensional parallelepiped (MP) interval model has been proposed to handle the uncertain problems with dependent interval variables. The MP interval model is integrated to depict the uncertain domain of the problem, where the uncertainties are described by marginal intervals and the degree of the dependencies among the interval variables is described by correlation coefficients. Then an efficient multi-objective iterative algorithm combining the micro multi-objective genetic algorithm (MOGA) with an approximate optimization method is formulated. Three numerical examples are presented to demonstrate the efficiency of the proposed approach.


2010 ◽  
Vol 43 (5) ◽  
pp. 647-656 ◽  
Author(s):  
María Belén Prendes-Gero ◽  
Jean-Marc Drouet

2009 ◽  
Vol 26 (2) ◽  
pp. 225-234 ◽  
Author(s):  
Tao Xu ◽  
Wenjie Zuo ◽  
Tianshuang Xu ◽  
Guangcai Song ◽  
Ruichuan Li

Sign in / Sign up

Export Citation Format

Share Document