Estimating small cell-loss ratios in ATM switches via importance sampling

2001 ◽  
Vol 11 (1) ◽  
pp. 76-105 ◽  
Author(s):  
Pierre L'Ecuyer ◽  
Yanick Champoux
2015 ◽  
Vol 22 (4) ◽  
pp. 609-621 ◽  
Author(s):  
Carolin Maria Frisch ◽  
Katrin Zimmermann ◽  
Pia Zilleßen ◽  
Alexander Pfeifer ◽  
Kurt Racké ◽  
...  

Insulin plays an important role as a growth factor and its contribution to tumor proliferation is intensely discussed. It acts via the cognate insulin receptor (IR) but can also activate the IGF1 receptor (IGF1R). Apart from increasing proliferation, insulin might have additional effects in lung cancer. Therefore, we investigated insulin action and effects of IR knockdown (KD) in three (NCI-H292, NCI-H226 and NCI-H460) independent non-small cell lung cancer (NSCLC) cell lines. All lung cancer lines studied were found to express IR, albeit with marked differences in the ratio of the two variants IR-A and IR-B. Insulin activated the classical signaling pathway with IR autophosphorylation and Akt phosphorylation. Moreover, activation of MAPK was observed in H292 cells, accompanied by enhanced proliferation. Lentiviral shRNA IR KD caused strong decrease in survival of all three lines, indicating that the effects of insulin in lung cancer go beyond enhancing proliferation. Unspecific effects were ruled out by employing further shRNAs and different insulin-responsive cells (human pre-adipocytes) for comparison. Caspase assays demonstrated that IR KD strongly induced apoptosis in these lung cancer cells, providing the physiological basis of the rapid cell loss. In search for the underlying mechanism, we analyzed alterations in the gene expression profile in response to IR KD. A strong induction of certain cytokines (e.g. IL20 and tumour necrosis factor) became obvious and it turned out that these cytokines trigger apoptosis in the NSCLC cells tested. This indicates a novel role of IR in tumor cell survival via suppression of pro-apoptotic cytokines.


Author(s):  
K.S. McCarty ◽  
N.R. Wallace ◽  
W. Litaker ◽  
S. Wells ◽  
G. Eisenbarth

The production of adrenocorticotropic hormone by non-pituitary carcinomas has been documented in several tumors, most frequently small cell carcinoma of the lung, islet cell carcinomas of the pancreas, thymomas and carcinoids. Electron microscopy of these tumors reveals typical membrane-limited "neurosecretory" granules. Confirmation of the granules as adrenocorticotropin (ACTH) requires the use of OsO4 as a primary fixative to give the characteristic cored granule appearance in conjunction with immunohistochemical demonstration of the hormone peptide. Because of the rarity of ectopic ACTH production by mammary carcinomas and the absence of appropriate ultrastructural studies in the two examples of such ectopic hormone production in the literature of which we are aware (1,2), we present biochemical and ultrastructural data from a carcinoma of the breast with apparent ACTH production.The patient had her primary tumor in the right breast in 1969. The tumor recurred as visceral and subcutaneous metastases in 1976 and again in 1977.


Sign in / Sign up

Export Citation Format

Share Document