Three-dimensional data input by tablet

1974 ◽  
Vol 8 (3) ◽  
pp. 86-86 ◽  
Author(s):  
I. E. Sutherland
Keyword(s):  
1974 ◽  
Vol 62 (4) ◽  
pp. 453-461 ◽  
Author(s):  
I.E. Sutherland
Keyword(s):  

1981 ◽  
Vol 21 (04) ◽  
pp. 454-458 ◽  
Author(s):  
Russell H. Trimble ◽  
A.E. McDonald

Abstract WELCOS is a robust, three-dimensional, three-phase well coning simulator that couples the well rate equation to the reservoir flow equations. This strong coupling allows well rate to be determined simultaneously with reservoir pressures and saturations. The flexibility obtained permits the use of dynamic constraints on well rates, resulting in a highly stable model. The model may be used to obtain the maximum well productivity for a given set of physical limitations and regulatory constraints e.g., minimum surface pressure, maximum allowed GOR, WOR, water rate, gas rate, etc. The model can function either as a production well or an injection well and, in general, may be used to study any single-well behavior. This paper describes a strongly coupled formulation and discusses its utility in relation to other implicit models. The linearization of the nonlinear finite difference equations and solution of the resulting linear equations are discussed. Example field applications are included to show the utility of user-supplied production constraints in determining well performance. Introduction A number of well coning simulators have been reported in the literature. 1–6 This paper describes a three-dimensional, three-phase well coning simulator that has been in extensive use in our company since 1972. A primary consideration in the development of WELCOS was easy usage by inexperienced users working difficult problems. This demands freedom from stability problems and algorithmic parameters requiring user intervention. This paper emphasizes stability and flexibility of a strongly coupled algorithm. Strong coupling of the production and reservoir flow terms requires simultaneous solution for all unknowns, without auxiliary side calculations or approximations to bring the well rate terms to a desired level of accuracy. This algorithm is computationally more expensive than a sequential formation7,8 but it has several offsetting advantages. Increased stability permits larger time steps than sequential methods, especially for difficult problems. The coupling of the well constraints yields a very reliable model. The user can forecast well potential under assigned operating conditions with a single simulation run. Several trial-and-error runs may be required when operating constraints are uncoupled from the flow equations. The utility of WELCOS is enhanced further by modern concepts of well flow equations.9,10 These include the pseudogas potential function,11 skin factor to account for damage or improvement, non-Darcy flow effect, flow restriction due to restricted entry such as partial penetration, flash surface separation, gas lift calculations, and tubing string pressure losses. Simplicity and flexibility are key features of the data input and output systems. Data input has free-field formatting with a standard structure for all cards. Each card has a mnemonic field for data identification, a control field for processing instructions, and six data fields. Data need not appear in specific columns within fields. All input cards are read and checked for validity (proper mnemonic card names, valid numbers, etc.) and for inconsistencies (such as monotonic table values, negative numbers, etc.). A data processing run will not be aborted when the first error is detected. Processing will continue until as many errors as possible have been found.


2014 ◽  
Vol 529 ◽  
pp. 303-307 ◽  
Author(s):  
De Wei Pan ◽  
Cheng Xin Lin ◽  
De Ping Sun ◽  
Chao Yu Zhou ◽  
Peng Xu

The uprighting process of capsized vessel based on considering the buoyancy and stability of wreck was studied in this paper. The model of the righting force for the wreck salvage was established according to the mechanical characteristics of wreck. The analysis and calculation were demonstrated by the salvage module of GHS software in view of the problem of righting force programme, which need long computing time and large amount of data input. Take the simulation of righting a capsized yacht as an example, the three-dimensional model was established and the righting process was simulated via GHS software, the maximum righting force and the occurring phase, angle of vanishing stability and longitudinal distribution of torque values can be obtained from the analysis. And the results can play a crucial role in the uprighting process of a capsized ship. The uprighting process of inclining ship can be simulated by using the GHS software, which is suitable for making salvage scheme.


1966 ◽  
Vol 25 ◽  
pp. 227-229 ◽  
Author(s):  
D. Brouwer

The paper presents a summary of the results obtained by C. J. Cohen and E. C. Hubbard, who established by numerical integration that a resonance relation exists between the orbits of Neptune and Pluto. The problem may be explored further by approximating the motion of Pluto by that of a particle with negligible mass in the three-dimensional (circular) restricted problem. The mass of Pluto and the eccentricity of Neptune's orbit are ignored in this approximation. Significant features of the problem appear to be the presence of two critical arguments and the possibility that the orbit may be related to a periodic orbit of the third kind.


Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

The present knowledge of the three-dimensional structure of ribosomes is far too limited to enable a complete understanding of the various roles which ribosomes play in protein biosynthesis. The spatial arrangement of proteins and ribonuclec acids in ribosomes can be analysed in many ways. Determination of binding sites for individual proteins on ribonuclec acid and locations of the mutual positions of proteins on the ribosome using labeling with fluorescent dyes, cross-linking reagents, neutron-diffraction or antibodies against ribosomal proteins seem to be most successful approaches. Structure and function of ribosomes can be correlated be depleting the complete ribosomes of some proteins to the functionally inactive core and by subsequent partial reconstitution in order to regain active ribosomal particles.


Author(s):  
P.L. Moore

Previous freeze fracture results on the intact giant, amoeba Chaos carolinensis indicated the presence of a fibrillar arrangement of filaments within the cytoplasm. A complete interpretation of the three dimensional ultrastructure of these structures, and their possible role in amoeboid movement was not possible, since comparable results could not be obtained with conventional fixation of intact amoebae. Progress in interpreting the freeze fracture images of amoebae required a more thorough understanding of the different types of filaments present in amoebae, and of the ways in which they could be organized while remaining functional.The recent development of a calcium sensitive, demembranated, amoeboid model of Chaos carolinensis has made it possible to achieve a better understanding of such functional arrangements of amoeboid filaments. In these models the motility of demembranated cytoplasm can be controlled in vitro, and the chemical conditions necessary for contractility, and cytoplasmic streaming can be investigated. It is clear from these studies that “fibrils” exist in amoeboid models, and that they are capable of contracting along their length under conditions similar to those which cause contraction in vertebrate muscles.


Sign in / Sign up

Export Citation Format

Share Document