torque values
Recently Published Documents


TOTAL DOCUMENTS

362
(FIVE YEARS 125)

H-INDEX

23
(FIVE YEARS 5)

2022 ◽  
Vol 12 (5) ◽  
pp. 933-938
Author(s):  
Xuejian Zhang ◽  
Yue Deng ◽  
Yan Wang ◽  
Chuanrong Yin ◽  
Junzhao Gao

Objective: To investigate the effect of insertion torque on implant osseointegration in an animal model. Methods: First, the first to fourth premolars of nine healthy adult beagles’ mandibular were extracted to form an edentulous area, and then the beagles were equally divided into three groups with different torques (low torque: 10–30 Ncm; medium torque: 30–50 Ncm; high torque: > 70 Ncm). Three implants were placed on each side of the edentulous area of the beagles (54 total), and the dogs were observed for 8 weeks. Implant performance and removal torque values (RTV) were determined at 1, 4, and 8 weeks after surgery. In addition, the expression ratios of OPG and RANKL mRNAs in the surrounding bone tissue were determined. Results: None of the 54 implants showed loosening or loss, and no significant bone resorption was observed. The removing torques and the expression ratios of OPG and RANKL mRNAs showed differences at 1 and 4 weeks after surgery, while they converged at 8 weeks after the surgery (p > 0.05). Conclusion: The osteointegration process lasted approximately 8 weeks depending on the difference in parameters, and all parameters showed the same values even though the insertion torques at the beginning were different.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Sergio Alexandre Gehrke ◽  
Jaime Aramburú Júnior ◽  
Tiago Luis Eirles Treichel ◽  
Tales Dias do Prado ◽  
Berenice Anina Dedavid ◽  
...  

AbstractThe aim of the present in vivo study was to analyze and compare the effects on the crestal bone healing of two different implant macrogeometries installed in fresh socket areas and in normal bone areas with different insertion torque values. Two implant macrogeometries were used in the present study, DuoCone implant (DC) and Maestro implant (MAE), forming four groups: group DCws, in which the implants were installed in healing bone (without a socket); group DCfs, in which the implants were installed in post-extraction areas (fresh sockets); group MAEws, in which the implants were installed in healing bone (without a socket); group MAEfs, in which the implants were installed in post-extraction areas (fresh sockets). After 30 and 90 days of implantations in the bilateral mandibles of 10 sheep, eighty implants were evaluated through digital X-ray images and histologic slices. The crestal bone position in relation to the implant platform shoulder was measured and compared. The measured insertion torque was 47.2 ± 4.69 Ncm for the DCws group, 43.4 ± 4.87 Ncm for the DCfs group, 29.3 ± 3.16 Ncm for the MAEws group, and 27.7 ± 4.41 Ncm for the MAEfs group. The radiographic mesio-distal and histological bucco-lingual analyses showed significantly greater vertical bone loss in the implants installed with high torque (DC groups) in comparison to the implants installed with a low torque (MAE groups) (p < 0.05), at both evaluation times. In general, low insertion torque values (Maestro implants) showed better results of MBL when compared to implants installed with higher torque values (Duo Cone implants). Moreover, our results showed that the implants installed in the sites without sockets showed a less MBL in comparison with the implants installed in sites of fresh sockets.


Author(s):  
Ekim Onur Orhan ◽  
Duygu Bahadır ◽  
Ozgur Irmak

Author(s):  
Sezgin Eser ◽  
Sevda Telli Çetin

This paper presents a stable control for a single link flexible manipulator. The flexible manipulator is considered as Euler–Bernoulli beam, and its dynamic model is developed based on assumed mode method. Position and vibration control are realised with a single controller as motor torque. The controller has three parameters that must be selected. In this paper, the main motivation is to find the suitable parameter values to generate optimum torque values in every sampling time. In order to achieve this goal, Artificial Bee Colony Algorithm is performed, and the controller parameters are optimised simultaneously in every sampling period. Simulations verify that the manipulator achieves the position control objective, and the vibration is suppressed simultaneously even with different payloads with the proposed optimisation method.


2021 ◽  
Author(s):  
Yahya Badar Nasser Al Amri ◽  
Qasim Al Rawahi ◽  
Humaid AL Adawi ◽  
Badar Al Maashari ◽  
Ludovic Soden ◽  
...  

Abstract A Large Omani Operator successfully achieved best in class performance in drilling extended reach dual-lateral wells in Oman. Turning the legs to achieve the required separation distance and continue drilling to the required depth through a thin fractured reservoir resulted in complex well trajectories and harsh drilling environment. This paper will focus on the newly innovative designs, engineering optimizations and utilizing lean methodology to overcome drilling risks and achieve best in class performance. Rotary Steerable system was utilized to drill the extended reach drilling (ERD) in 3D with continuous proportional steering technology. Advance modeling including lateral shocks, Torque and Drag and BHA design were as well key enablers. Logging while drilling tools supported reservoir mapping and real-time well placement decisions. To excel in lateral applications and overcome harsh drilling environment, a shallow cone tip profile with High Performance cutter bit technology was selected. A focus optimization project using lean tools was performed to map out the undercut process, visualize possible waste, perform root causes analysis and implement countermeasures to eliminate the process waste Regional benchmark showed that the performance of 11 wells drilled since the start of the campaign is located within the best 10% of the benchmark data which is marked as best in class performance. Due to the continues improvement, the campaign manages to reach a learning curve of 30%. Furthermore, the actual production from the wells was 300% more than the forecast. Using the advanced RSS and bit technologies resulted in reducing the Torque values in the lateral section by 30% which effectively increased the reservoir drilled interval by 22%. The designed BHA also managed to complete wells including multi undercuts (up to 6) in one run. One trip Whipstock System for creating the second leg is used as part of the well design. The Whipstock system which is uniquely set in the horizontal tangent section has achieved 100% success rate in setting and retrieving operations. The undercut activities have improved by 50% as a direct result of the optimization Lean project. In addition, utilizing lean methodology resulted in reducing the cost impact of the additional sidetracks (undercuts) which enabled having best reservoir quality and achieving savings over the total cost of ownership TCO. Extended Reach Dual lateral well design was utilized for the first time in PDO operations during this drilling campaign. This paper will present how advance modelling can enable the industry to deliver complex well designs. Additionally, it will introduce the company innovation in implementing the Lean philosophy to optimize the drilling operation.


2021 ◽  
Vol 11 (24) ◽  
pp. 11657
Author(s):  
Laura Bernes Martinez ◽  
Daniele Garcovich ◽  
Alfonso Alvarado Lorenzo ◽  
Angel Zhou Wu ◽  
Riccardo Aiuto ◽  
...  

Background: The precision of bracket manufacturing is fundamental to ensure the correct expression of the inbuilt information. The objective of this study was to determine the actual tip and torque values of a pool of stainless steel brackets, pre-adjusted according to the MBT prescription values, and to compare these actual values with those stated by the manufacturers in order to test their compliance with the tolerance limits reported in the ISO 27020:2019 Methods: A sample of 360 stainless steel brackets, from 12 different providers, were evaluated. All brackets had a nominal slot size of 0.022 in., belonged to the upper right central incisor, and were manufactured with the metal injection molding technique (MIM). For each provider, three different batches of the same bracket series were tested. A single-blind design was used for bracket coding. Results: Only five systems displayed torque mean values that matched the declared values (p > 0.05). Only one system did not respect the tolerance limits established in the ISO 27020:2019 norm. The tip values were different from those declared in seven of the assessed systems; however, none exceeded the tolerance limits. The inter-batch variability in most cases was not statistically significant. Conclusions: In most of the assessed systems, there can be a difference between the actual and the declared torque values, while tip information is usually accurately incorporated into the bracket slot. Lack of precision in the manufacturing process can reduce the efficacy of the appliance and force the clinician to compensate for dimensional inaccuracy through wire bending.


2021 ◽  
Vol 27 (6) ◽  
pp. 610-615
Author(s):  
Guillermo Charneco Salguero ◽  
Francisco García-Muro San José ◽  
Arturo Pérez Gosalvez ◽  
Jose Miguel Cárdenas Rebollo ◽  
Isabel Brígido Fernández ◽  
...  

ABSTRACT Introduction: Isokinetics is a tool commonly used in professional soccer. There is ongoing debate among researchers as to the isokinetic reference values a player should have. Objectives: To determine the absolute peak torque (PT) and average work of professional soccer players in relation to their positions on the field, and to establish the reference values for these variables. Methods: Purposeful sampling was used to select 289 professional soccer players. The sample included 32 goalkeepers, 100 defenders, 98 midfielders, and 59 strikers. The participants were measured preseason. The players were asked to perform a 10-minute warm-up on an exercise bike, and then to perform 5 repetitions at low speed, 10 at medium speed, and 25 at high speed, with 30 to 40-s of rest between each set of repetitions. The contraction method was concentric-concentric in a dynamometer Isomed 2000. Results: The average age, weight, and height of the players was 21.9 years, 74.3 kilograms, and 1.8 meters, respectively. The goalkeepers presented higher PT at the 3 measured speeds, and the higher average work at 180°/s and 240°/s in relation to defenders and midfielders. The strikers presented higher average work at 240°/s in relation to midfielders, and higher PT in relation to the defenders and midfielders. Absolute values were shown and reference values were established. Conclusions: The goalkeepers and strikers were the players that showed the greatest differences in their favor in relation to the other positions. The peak torque values and average work were described in relation to the player's position on the field. This study resulted in the creation of a tool for health professionals working with professional soccer players, providing reference values for these players in relation to their position on the field that can be used as benchmarks, by health professionals, to optimize soccer players’ performance. Level of evidence II, Prospective comparative study.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7126
Author(s):  
Łukasz Wójcik ◽  
Zbigniew Pater ◽  
Tomasz Bulzak ◽  
Janusz Tomczak ◽  
Konrad Lis

The article presents the results of model tests with which a comparative analysis of two methods of ball separation during the skew rolling process was carried out. A verification of the results obtained in the physical modelling process with the results obtained in the real process of skew ball rolling was also carried out. During the physical modelling, the effect of changing the ball separation method on the quality of the products obtained, variations in maximum torque values and maximum radial forces were analyzed. In the case of real tests, the results were verified with the results of physical modelling, in which the surface quality and torque values for one of the tool sets were compared. Physical modelling was used to verify the differences between the two methods of ball separation. Commercial plasticine based on synthetic wax from the manufacturer PRIMO was used as a model material for physical analysis. The plasticine used for testing was cooled to 0 °C and the cooling process took 24 h. The tools used for the physical modelling were 3D printed and the material used was ABS. The method of physical modelling using plasticine as a model material allows for a correct analysis of hot metal forming processes.


2021 ◽  
Vol 1199 (1) ◽  
pp. 012040
Author(s):  
A Feriancová ◽  
A Dubec ◽  
J Pagáčová ◽  
I Labaj ◽  
M Pajtášová

Abstract Layered phyllosilicate fillers have received attention in the polymer industry due to their unique nanoscale sheet-like structure. Adding a small amount of bentonite nanofiller gives rise to improved mechanical, thermal, and gas barrier properties of rubber mixtures. Depending on the application, natural bentonite is often modified by physical processes or by chemical processes (intercalation, cation exchange process, functionalization, pillaring, etc.). Chemical modification increases the size of the interlayer spaces and provides a hydrophobic environment. Functionalization (e.g., silanization), which encompasses the chemical grafting of thermally stable silane coupling agents onto the clay platelets, make inorganic bentonite and the organic polymer matrix compatible. In the introduced study, commercial bentonite P130 from Lieskovec deposit was modified by silane (3-aminopropyl trietoxysilane) treatment. Different techniques such as infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were used to characterize modified and raw bentonite sample. Silanized P130s and raw product P130 were added to the natural rubber matrix to examine the influence of chemically functionalized bentonite on curing characteristic (M H, M L, t s2, t 90, ΔM) and mechanical properties (TSb, Eb, hardness) of rubber vulcanizates. Organo-bentonite was mixed into a rubber blend in particular ratio of 5, 10, 15, 20 phr in various combination with silane (3-aminopropyl triethoxysilane), Perkasil and carbon black. The highest maximum torque values were obtained with the sample using 20 phr of silanized P130s. The tensile strength (TSb) values decreased with increasing P130 content, as well as non-silanized and silanized P130. However, when 20 phr P130s was used, value of TSb was higher. The most enhanced properties of rubber blends were found with the addition of 20 phr of silanized bentonite P130s.


2021 ◽  
Vol 2095 (1) ◽  
pp. 012049
Author(s):  
Yinlong Tang ◽  
Huadong Song ◽  
Yating Yu ◽  
Jun Zhang ◽  
Wenguang Hu ◽  
...  

Abstract The force states of driving wheels are different when the self-propelled pipeline crawler moves in the pipeline, so it is difficult to carry out accurate theoretical analysis and calculation on the force and output torque values of each driving wheel in horizontal, climbing and turning conditions of the crawler. Due to the complex mechanical properties of pipeline sealing and the limitation of visualization, it takes a long period and high cost to develop the robot in pipeline by experimental means. With the gradual application of virtual simulation means, the complicated dynamic analysis and solution process in the past has become relatively easy. In this paper, Solid works is used to establish a simplified model of the crawler, and ADAMS is used to analyze and simulate the dynamics of the crawler. The force of the multi-wheel driven pipeline crawler is given under the condition of horizontal, climbing 35° and turning, which provides the necessary analysis method and theoretical basis for the design optimization and improvement. Finally, the horizontal, climbing and bending motion performance of the crawler is verified by comprehensive pipeline experiment.


Sign in / Sign up

Export Citation Format

Share Document