Conformation of Ribosomes from Escherichia Coli

Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

The present knowledge of the three-dimensional structure of ribosomes is far too limited to enable a complete understanding of the various roles which ribosomes play in protein biosynthesis. The spatial arrangement of proteins and ribonuclec acids in ribosomes can be analysed in many ways. Determination of binding sites for individual proteins on ribonuclec acid and locations of the mutual positions of proteins on the ribosome using labeling with fluorescent dyes, cross-linking reagents, neutron-diffraction or antibodies against ribosomal proteins seem to be most successful approaches. Structure and function of ribosomes can be correlated be depleting the complete ribosomes of some proteins to the functionally inactive core and by subsequent partial reconstitution in order to regain active ribosomal particles.

1994 ◽  
Vol 126 (2) ◽  
pp. 433-443 ◽  
Author(s):  
A McGough ◽  
M Way ◽  
D DeRosier

The three-dimensional structure of actin filaments decorated with the actin-binding domain of chick smooth muscle alpha-actinin (alpha A1-2) has been determined to 21-A resolution. The shape and location of alpha A1-2 was determined by subtracting maps of F-actin from the reconstruction of decorated filaments. alpha A1-2 resembles a bell that measures approximately 38 A at its base and extends 42 A from its base to its tip. In decorated filaments, the base of alpha A1-2 is centered about the outer face of subdomain 2 of actin and contacts subdomain 1 of two neighboring monomers along the long-pitch (two-start) helical strands. Using the atomic model of F-actin (Lorenz, M., D. Popp, and K. C. Holmes. 1993. J. Mol. Biol. 234:826-836.), we have been able to test directly the likelihood that specific actin residues, which have been previously identified by others, interact with alpha A1-2. Our results indicate that residues 86-117 and 350-375 comprise distinct binding sites for alpha-actinin on adjacent actin monomers.


Author(s):  
G. Stöffler ◽  
R.W. Bald ◽  
J. Dieckhoff ◽  
H. Eckhard ◽  
R. Lührmann ◽  
...  

A central step towards an understanding of the structure and function of the Escherichia coli ribosome, a large multicomponent assembly, is the elucidation of the spatial arrangement of its 54 proteins and its three rRNA molecules. The structural organization of ribosomal components has been investigated by a number of experimental approaches. Specific antibodies directed against each of the 54 ribosomal proteins of Escherichia coli have been performed to examine antibody-subunit complexes by electron microscopy. The position of the bound antibody, specific for a particular protein, can be determined; it indicates the location of the corresponding protein on the ribosomal surface.The three-dimensional distribution of each of the 21 small subunit proteins on the ribosomal surface has been determined by immuno electron microscopy: the 21 proteins have been found exposed with altogether 43 antibody binding sites. Each one of 12 proteins showed antibody binding at remote positions on the subunit surface, indicating highly extended conformations of the proteins concerned within the 30S ribosomal subunit; the remaining proteins are, however, not necessarily globular in shape (Fig. 1).


Author(s):  
M. Boublik ◽  
N. Robakis ◽  
J.S. Wall

The three-dimensional structure and function of biological supramolecular complexes are, in general, determined and stabilized by conformation and interactions of their macromolecular components. In the case of ribosomes, it has been suggested that one of the functions of ribosomal RNAs is to act as a scaffold maintaining the shape of the ribosomal subunits. In order to investigate this question, we have conducted a comparative TEM and STEM study of the structure of the small 30S subunit of E. coli and its 16S RNA.The conventional electron microscopic imaging of nucleic acids is performed by spreading them in the presence of protein or detergent; the particles are contrasted by electron dense solution (uranyl acetate) or by shadowing with metal (tungsten). By using the STEM on freeze-dried specimens we have avoided the shearing forces of the spreading, and minimized both the collapse of rRNA due to air drying and the loss of resolution due to staining or shadowing. Figure 1, is a conventional (TEM) electron micrograph of 30S E. coli subunits contrasted with uranyl acetate.


PLoS ONE ◽  
2017 ◽  
Vol 12 (3) ◽  
pp. e0171355 ◽  
Author(s):  
Roshni Bhattacharya ◽  
Peter W. Rose ◽  
Stephen K. Burley ◽  
Andreas Prlić

Triose phosphate isomerase is a dimeric enzyme of molecular mass 56000 which catalyses the interconversion of dihydroxyacetone phosphate (DHAP) and D-glyceraldehyde-3-phosphate. The crystal structure of the enzyme from chicken muscle has been determined at a resolution of 2.5 A, and an independent determination of the structure of the yeast enzyme has just been completed at 3 A resolution. The conformation of the polypeptide chain is essentially identical in the two structures, and consists of an inner cylinder of eight strands of parallel |3-pleated sheet, with mostly helical segments connecting each strand. The active site is a pocket containing glutamic acid 165, which is believed to act as a base in the reaction. Crystallographic studies of the binding of DHAP to both the chicken and the yeast enzymes reveal a common mode of binding and suggest a mechanism for catalysis involving polarization of the substrate carbonyl group.


2021 ◽  
Author(s):  
Miao Guo ◽  
Yucai Chen ◽  
Longlong Lin ◽  
Yilin Wang ◽  
Anqi Wang ◽  
...  

Abstract Background: Lesch-Nyhan disease (LND) is a rare x-linked purine metabolic neurogenetic disease caused by enzyme hypoxanthine-guanine phosphoriribosyltransferase(HGprt) deficiency, also known as self-destructive appearance syndrome. A series of manifestations are caused by abnormal purine metabolism. The typical clinical manifestations are hyperuricemia, growth retardation, mental retardation, short stature, dance-like athetosis, aggressive behavior, and compulsive self-harm.. Results: we identified a point mutation c.151C > T (p. Arg51*) in a pedigree. We analyzed the clinical characteristics of children in a family, and obtained the blood of their parents and siblings for second-generation sequencing. At the same time, we also analyzed and compared the expression of HPRT1 gene and predicted the three-dimensional structure of the protein. And we analyzed the clinical manifestations caused by the defect of the HPRT1 genethe mutation led to the termination of transcription at the 51st arginine, resulting in the production of truncated protein, and the relative expression of HPRT1 gene in patients was significantly lower than other family members and 10 normal individuals. Conclusion: this mutation leads to the early termination of protein translation and the formation of a truncated HPRT protein, which affects the function of the protein and generates corresponding clinical manifestations.


Sign in / Sign up

Export Citation Format

Share Document