Nash Equilibrium in Discontinuous Games

2020 ◽  
Vol 12 (1) ◽  
pp. 439-470
Author(s):  
Philip J. Reny

We review the discontinuous games literature, with a sharp focus on conditions that ensure the existence of pure and mixed strategy Nash equilibria in strategic form games and of Bayes-Nash equilibria in Bayesian games.

2019 ◽  
Vol 21 (04) ◽  
pp. 1950004
Author(s):  
Rabia Nessah ◽  
Tarik Tazdait

We introduce a new notion of continuity, called quasi-transfer continuity, and show that it is enough to guarantee the existence of Nash equilibria in compact, quasiconcave normal form games. This holds true in a large class of discontinuous games. We show that our result strictly generalizes the pure strategy existence theorem of Carmona [Carmona, G. [2009] An existence result for discontinuous games, J. Econ. Theory 144, 1333–1340]. We also show that our result is neither implied by nor does it imply the existence theorems of Reny [Reny, J. P. [1999] On the existence of pure and mixed strategy Nash equilibria in discontinuous games, Econometrica 67, 1029–1056] and Baye et al. [Baye, M. R., Tian, G. and Zhou, J. [1993] Characterizations of the existence of equilibria in games with discontinuous and nonquasiconcave payoffs, Rev. Econ. Studies 60, 935–948].


2017 ◽  
Vol 19 (03) ◽  
pp. 1750014
Author(s):  
Rabia Nessah ◽  
Raluca Parvulescu

This paper gives existence theorems of pure, Pareto efficient, Nash equilibrium in compact, convex and discontinuous games. These conditions are simple and straightforward to verify. Moreover, the present existence results neither imply nor are implied by the known results in the literature. The results are illustrated by several examples.


Author(s):  
Samuel Sokota ◽  
Caleb Ho ◽  
Bryce Wiedenbeck

We present a novel approach for identifying approximate role-symmetric Nash equilibria in large simulation-based games. Our method uses neural networks to learn a mapping from mixed-strategy profiles to deviation payoffs—the expected values of playing pure-strategy deviations from those profiles. This learning can generalize from data about a tiny fraction of a game’s outcomes, permitting tractable analysis of exponentially large normal-form games. We give a procedure for iteratively refining the learned model with new data produced by sampling in the neighborhood of each candidate Nash equilibrium. Relative to the existing state of the art, deviation payoff learning dramatically simplifies the task of computing equilibria and more effectively addresses player asymmetries. We demonstrate empirically that deviation payoff learning identifies better approximate equilibria than previous methods and can handle more difficult settings, including games with many more players, strategies, and roles.


2020 ◽  
Vol 23 (02) ◽  
pp. 2050005
Author(s):  
V. K. OIKONOMOU ◽  
J. JOST

At a mixed Nash equilibrium, the payoff of a player does not depend on her own action, as long as her opponent sticks to his. In a periodic strategy, a concept developed in a previous paper [V. K. Oikonomou and J. Jost, Periodic strategies: A new solution concept and an algorithm for nontrivial strategic form games, Adv. Compl. Syst. 20(5) (2017) 1750009], in contrast, the own payoff does not depend on the opponent’s action. Here, we generalize this to multi-player simultaneous perfect information strategic form games. We show that also in this class of games, there always exists at least one periodic strategy, and we investigate the mathematical properties of such periodic strategies. In addition, we demonstrate that periodic strategies may exist in games with incomplete information; we shall focus on Bayesian games. Moreover, we discuss the differences between the periodic strategies formalism and cooperative game theory. In fact, the periodic strategies are obtained in a purely non-cooperative way, and periodic strategies are as cooperative as the Nash equilibria are. Finally, we incorporate the periodic strategies in an epistemic game theory framework, and discuss several features of this approach.


2011 ◽  
pp. 65-87 ◽  
Author(s):  
A. Rubinstein

The article considers some aspects of the patronized goods theory with respect to efficient and inefficient equilibria. The author analyzes specific features of patronized goods as well as their connection with market failures, and conjectures that they are related to the emergence of Pareto-inefficient Nash equilibria. The key problem is the analysis of the opportunities for transforming inefficient Nash equilibrium into Pareto-optimal Nash equilibrium for patronized goods by modifying the institutional environment. The paper analyzes social motivation for institutional modernization and equilibrium conditions in the generalized Wicksell-Lindahl model for patronized goods. The author also considers some applications of patronized goods theory to social policy issues.


2021 ◽  
Vol 22 (2) ◽  
pp. 1-38
Author(s):  
Julian Gutierrez ◽  
Paul Harrenstein ◽  
Giuseppe Perelli ◽  
Michael Wooldridge

We define and investigate a novel notion of expressiveness for temporal logics that is based on game theoretic equilibria of multi-agent systems. We use iterated Boolean games as our abstract model of multi-agent systems [Gutierrez et al. 2013, 2015a]. In such a game, each agent  has a goal  , represented using (a fragment of) Linear Temporal Logic ( ) . The goal  captures agent  ’s preferences, in the sense that the models of  represent system behaviours that would satisfy  . Each player controls a subset of Boolean variables , and at each round in the game, player is at liberty to choose values for variables in any way that she sees fit. Play continues for an infinite sequence of rounds, and so as players act they collectively trace out a model for , which for every player will either satisfy or fail to satisfy their goal. Players are assumed to act strategically, taking into account the goals of other players, in an attempt to bring about computations satisfying their goal. In this setting, we apply the standard game-theoretic concept of (pure) Nash equilibria. The (possibly empty) set of Nash equilibria of an iterated Boolean game can be understood as inducing a set of computations, each computation representing one way the system could evolve if players chose strategies that together constitute a Nash equilibrium. Such a set of equilibrium computations expresses a temporal property—which may or may not be expressible within a particular fragment. The new notion of expressiveness that we formally define and investigate is then as follows: What temporal properties are characterised by the Nash equilibria of games in which agent goals are expressed in specific fragments of  ? We formally define and investigate this notion of expressiveness for a range of fragments. For example, a very natural question is the following: Suppose we have an iterated Boolean game in which every goal is represented using a particular fragment of : is it then always the case that the equilibria of the game can be characterised within ? We show that this is not true in general.


Author(s):  
Amir Ali Ahmadi ◽  
Jeffrey Zhang

We explore the power of semidefinite programming (SDP) for finding additive ɛ-approximate Nash equilibria in bimatrix games. We introduce an SDP relaxation for a quadratic programming formulation of the Nash equilibrium problem and provide a number of valid inequalities to improve the quality of the relaxation. If a rank-1 solution to this SDP is found, then an exact Nash equilibrium can be recovered. We show that, for a strictly competitive game, our SDP is guaranteed to return a rank-1 solution. We propose two algorithms based on the iterative linearization of smooth nonconvex objective functions whose global minima by design coincide with rank-1 solutions. Empirically, we demonstrate that these algorithms often recover solutions of rank at most 2 and ɛ close to zero. Furthermore, we prove that if a rank-2 solution to our SDP is found, then a [Formula: see text]-Nash equilibrium can be recovered for any game, or a [Formula: see text]-Nash equilibrium for a symmetric game. We then show how our SDP approach can address two (NP-hard) problems of economic interest: finding the maximum welfare achievable under any Nash equilibrium, and testing whether there exists a Nash equilibrium where a particular set of strategies is not played. Finally, we show the connection between our SDP and the first level of the Lasserre/sum of squares hierarchy.


Econometrica ◽  
2021 ◽  
Vol 89 (3) ◽  
pp. 1065-1098
Author(s):  
Drew Fudenberg ◽  
Giacomo Lanzani ◽  
Philipp Strack

We study how an agent learns from endogenous data when their prior belief is misspecified. We show that only uniform Berk–Nash equilibria can be long‐run outcomes, and that all uniformly strict Berk–Nash equilibria have an arbitrarily high probability of being the long‐run outcome for some initial beliefs. When the agent believes the outcome distribution is exogenous, every uniformly strict Berk–Nash equilibrium has positive probability of being the long‐run outcome for any initial belief. We generalize these results to settings where the agent observes a signal before acting.


Sign in / Sign up

Export Citation Format

Share Document