NONSEGMENTED NEGATIVE-STRAND RNA VIRUSES: Genetics and Manipulation of Viral Genomes

1998 ◽  
Vol 32 (1) ◽  
pp. 123-162 ◽  
Author(s):  
Karl-Klaus Conzelmann
Author(s):  
Knut Falk ◽  
Maria Aamelfot ◽  
Ole Bendik Dale ◽  
Theodore R. Meyers ◽  
Sally Ann Iverson ◽  
...  

RNA Genetics ◽  
2018 ◽  
pp. 137-158
Author(s):  
Paul S. Masters ◽  
Amiya K. Banerjee
Keyword(s):  

2021 ◽  
Author(s):  
Yue Xiao ◽  
Wenyu Zhang ◽  
Minglei Pan ◽  
David L. V. Bauer ◽  
Yuhai Bi ◽  
...  

The influenza A virus genome is comprised of eight single-stranded negative-sense viral RNA (vRNA) segments. Each of the eight vRNA segments contains segment-specific nonconserved noncoding regions (NCRs) of similar sequence and length in different influenza A virus strains. However, in the subtype-determinant segments, encoding haemagglutinin (HA) and neuraminidase (NA), the segment-specific noncoding regions are subtype-specific, varying significantly in sequence and length at both the 3´ and 5´ termini among different subtypes. The significance of these subtype-specific noncoding regions (ssNCR) in the influenza virus replication cycle is not fully understood. In this study, we show that truncations of the 3´-end H1-subtype-specific noncoding region (H1-ssNCR) resulted in recombinant viruses with decreased HA vRNA replication and attenuated growth phenotype, although the vRNA replication was not affected in single-template RNP reconstitution assays. The attenuated viruses were unstable and point mutations at nucleotide position 76 or 56 in the adjacent coding region of HA vRNA were found after serial passage. The mutations restored the HA vRNA replication and reversed the attenuated virus growth phenotype. We propose that the terminal noncoding and adjacent coding regions act synergistically to ensure optimal levels of HA vRNA replication in a multi-segment environment. These results, provide novel insights into the role of the 3´-end nonconserved noncoding regions and adjacent coding regions on template preference in multiple-segmented negative-strand RNA viruses. IMPORTANCE While most influenza A virus vRNA segments contain segment-specific nonconserved noncoding regions of similar length and sequence, these regions vary considerably both in length and sequence in the segments encoding HA and NA, the two major antigenic determinants of influenza A viruses. In this study, we investigated the function of the 3´-end H1-ssNCR and observed a synergistic effect between the 3´-end H1-ssNCR nucleotides and adjacent coding nucleotide(s) of HA segment on template preference in a multi-segment environment. The results unravel an additional level of complexity in the regulation of RNA replication in multiple-segmented negative-strand RNA viruses.


Author(s):  
Rafael de Cesaris Araujo Tavares ◽  
Gandhar Mahadeshwar ◽  
Han Wan ◽  
Nicholas C. Huston ◽  
Anna Marie Pyle

SARS-CoV-2 is the causative viral agent of COVID-19, the disease at the center of the current global pandemic. While knowledge of highly structured regions is integral for mechanistic insights into the viral infection cycle, very little is known about the location and folding stability of functional elements within the massive, ∼30kb SARS-CoV-2 RNA genome. In this study, we analyze the folding stability of this RNA genome relative to the structural landscape of other well-known viral RNAs. We present an in-silico pipeline to predict regions of high base pair content across long genomes and to pinpoint hotspots of well-defined RNA structures, a method that allows for direct comparisons of RNA structural complexity within the several domains in SARS-CoV-2 genome. We report that the SARS-CoV-2 genomic propensity for stable RNA folding is exceptional among RNA viruses, superseding even that of HCV, one of the most structured viral RNAs in nature. Furthermore, our analysis suggests varying levels of RNA structure across genomic functional regions, with accessory and structural ORFs containing the highest structural density in the viral genome. Finally, we take a step further to examine how individual RNA structures formed by these ORFs are affected by the differences in genomic and subgenomic contexts, which given the technical difficulty of experimentally separating cellular mixtures of sgRNA from gRNA, is a unique advantage of our in-silico pipeline. The resulting findings provide a useful roadmap for planning focused empirical studies of SARS-CoV-2 RNA biology, and a preliminary guide for exploring potential SARS-CoV-2 RNA drug targets. Importance The RNA genome of SARS-CoV-2 is among the largest and most complex viral genomes, and yet its RNA structural features remain relatively unexplored. Since RNA elements guide function in most RNA viruses, and they represent potential drug targets, it is essential to chart the architectural features of SARS-CoV-2 and pinpoint regions that merit focused study. Here we show that RNA folding stability of SARS-CoV-2 genome is exceptional among viral genomes and we develop a method to directly compare levels of predicted secondary structure across SARS-CoV-2 domains. Remarkably, we find that coding regions display the highest structural propensity in the genome, forming motifs that differ between the genomic and subgenomic contexts. Our approach provides an attractive strategy to rapidly screen for candidate structured regions based on base pairing potential and provides a readily interpretable roadmap to guide functional studies of RNA viruses and other pharmacologically relevant RNA transcripts.


PLoS ONE ◽  
2008 ◽  
Vol 3 (4) ◽  
pp. e2032 ◽  
Author(s):  
Matthias Habjan ◽  
Ida Andersson ◽  
Jonas Klingström ◽  
Michael Schümann ◽  
Arnold Martin ◽  
...  

Viruses ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 341
Author(s):  
Liang-Tzung Lin

Members of the Morbillivirus genus are enveloped, negative-strand RNA viruses that include a number of highly contagious pathogens important to humans and animals [...]


Sign in / Sign up

Export Citation Format

Share Document