Whole-Brain CT Perfusion Measurement of Perfused Cerebral Blood Volume in Acute Ischemic Stroke: Probability Curve for Regional Infarction

Radiology ◽  
2003 ◽  
Vol 227 (3) ◽  
pp. 725-730 ◽  
Author(s):  
George J. Hunter ◽  
Heli M. Silvennoinen ◽  
Leena M. Hamberg ◽  
Walter J. Koroshetz ◽  
Ferdinando S. Buonanno ◽  
...  
2013 ◽  
Vol 55 (7) ◽  
pp. 827-835 ◽  
Author(s):  
Kolja M. Thierfelder ◽  
Wieland H. Sommer ◽  
Alena B. Baumann ◽  
Ernst Klotz ◽  
Felix G. Meinel ◽  
...  

Stroke ◽  
2014 ◽  
Vol 45 (suppl_1) ◽  
Author(s):  
Simon Morr ◽  
Maxim Mokin ◽  
Ashish Sonig ◽  
Kenneth Snyder ◽  
Adnan Siddiqui ◽  
...  

Introduction: Tools for evaluating risk of post-intervention risk hemorrhage in the setting of acute stroke include a noncontrast head CT based Alberta Stroke Program Early CT score (ASPECTS) and contrasted CT based perfusion plots. The correlation between these parameters is unknown. Methods: We performed a retrospective analysis of a prospectively collected endovascular stroke database of patients with M1 middle cerebral artery occlusion who underwent endovascular recanalization. We reviewed admission preintervention noncontrast CT for Alberta Stroke Program Early CT score (ASPECTS) and 320-detector row whole brain CT perfusion parameters (Cerebral blood volume and time to peak). Pearson correlation was determined between cerebral blood volume on the side of the stroke and ASPECTS. Results: ASPECTS and CT perfusion map were identified in 45 and 43 patients respectively. Statistically significant correlation was found between ASPECTS and cerebral blood volume data on CT perfusion MAP. (p=0.034, r=-0.28). The correlation coefficient is very weak. No correlation could be found between time to peak and ASPECTS. Conclusion: A statistically significant, but weak correlation exists between ASPECTS and CBV. Further research is needed to assess the physiological meaning of diverse imaging modalities utilized in the acute stroke setting.


2015 ◽  
Vol 36 (10) ◽  
pp. 1777-1783 ◽  
Author(s):  
Christopher D. d’Esterre ◽  
Gloria Roversi ◽  
Marina Padroni ◽  
Andrea Bernardoni ◽  
Carmine Tamborino ◽  
...  

2014 ◽  
Vol 41 (5) ◽  
pp. 307-315 ◽  
Author(s):  
A. Bivard ◽  
C. Levi ◽  
V. Krishnamurthy ◽  
J. Hislop-Jambrich ◽  
P. Salazar ◽  
...  

Stroke ◽  
2014 ◽  
Vol 45 (suppl_1) ◽  
Author(s):  
Nandakumar Nagaraja ◽  
Marie Luby ◽  
Matthew Edwardson ◽  
Ramin Zand ◽  
Lawrence L Latour

Objective: FLAIR hyperintensity is being used in clinical trials as a surrogate imaging biomarker for stroke onset time to test the safety of thrombolysis. Studies have shown that patients with negative and positive FLAIR hyperintensity overlap at similar time points from stroke onset in the early phase of acute ischemic stroke (AIS). Hyperintensity on FLAIR MRI likely represents increased tissue water content. We sought to determine if cerebral blood volume (CBV) mediates FLAIR hyperintensity in the early phase of AIS. Methods: AIS patients seen in 2012 were included in the study if i) onset time was known, ii) an MRI with perfusion was performed within 12 hours of onset time, iii) had imaging confirmed vascular occlusion of ICA, M1, or M2. Following co-registration of raw perfusion images with FLAIR, CBV maps were generated using PMA ASIST™ software. Two raters blinded to clinical information separately evaluated the DWI, FLAIR and CBV maps and measured the signal intensity ratio (SIR) for the brightest region on FLAIR normalized by homologous contra-lateral tissue. The SIR was similarly measured for CBV in same region. FLAIR negative was defined as SIR<1.15, “Low CBV” was defined as CBV SIR <0.5. Results: One hundred eighty two patients were screened and 30 met all study criteria; 21 women, with mean age of 71 (± 16) years and median NIHSS 18 (IQR 9-22). Using linear regression analysis, CBV SIR was associated with FLAIR SIR (p <0.049). In the 0-3hr time window, overall CBV was not associated with FLAIR hyperintensity. However, in the 3-7.5hr time window, patients with negative FLAIR were more likely to have low CBV and conversely, patients with positive FLAIR were more likely to have normal CBV. Conclusion: CBV likely mediates FLAIR hyperintensity in 3-7.5hr of stroke onset but it has less impact on FLAIR hyperintensity in the first 3 hours of AIS. Low CBV could be a potential surrogate imaging biomarker in addition to FLAIR hyperintensity in the early phase of AIS.


Stroke ◽  
2013 ◽  
Vol 44 (suppl_1) ◽  
Author(s):  
Bruce C Campbell ◽  
Søren Christensen ◽  
Nawaf Yassi ◽  
Gagan Sharma ◽  
Andrew Bivard ◽  
...  

Background and purpose: CT perfusion (CTP) provides rapid and accessible imaging of ischemic stroke pathophysiology. Studies with limited brain coverage CTP have suggested that relative cerebral blood flow (relCBF) is the optimal CTP parameter to define irreversible infarction. We analyzed patients with whole brain CT perfusion and contemporaneous MR perfusion-diffusion imaging to confirm the optimal CTP parameter for infarct core and compare mismatch classification between MR and CT. Methods: Acute ischemic stroke patients <6hr after onset had whole brain CTP (320slice) closely followed by perfusion-diffusion MRI. Maps of CBF, CBV and time-to-peak of the deconvolved tissue residue function (Tmax) were generated by RAPID automated perfusion analysis software (Stanford University) using delay insensitive deconvolution. The optimal CTP map to identify infarct core was selected by maximizing the average Dice co-efficient across the same threshold range for all patients using co-registered diffusion lesion (manually outlined to its maximal visual extent) as reference region. Mismatch classification agreement between CT and MRI was then assessed using 2 definitions: mismatch ratio a) >1.2 or b) >1.8, absolute mismatch a) >10mL or b) >15mL, infarct core<70mL. Results: In 28 patients imaged <6hr from stroke onset (median age 69, median onset to CT 180min, median CT to MR 69min), relCBF provided the most accurate estimate for infarct core, significantly better than absolute or relative CBV (both p<0.001). Using relCBF to generate acute CTP infarct core volumes, the median magnitude of volume difference versus diffusion MR was 6.9mL, interquartile range 1.6-27.4mL. CTP mismatch between relCBF core and Tmax>6sec perfusion lesion was assessed in 25 patients (3/28 had no MR perfusion). CTP and MR perfusion-diffusion mismatch classification agreed in 23/25 (92%) patients (kappa 0.84) using either definition. Conclusions: This study using whole brain CTP confirms the greater accuracy of CBF over CBV for estimation of the infarct core. The >90% agreement in mismatch classification between CTP and MRI supports the concept that both modalities can identify similar patient populations for clinical trials of reperfusion therapies.


2000 ◽  
Vol 20 (6) ◽  
pp. 910-920 ◽  
Author(s):  
Yawu Liu ◽  
Jari O. Karonen ◽  
Ritva L. Vanninen ◽  
Leif Østergaard ◽  
Reina Roivainen ◽  
...  

Nineteen patients with acute ischemic stroke (<24 hours) underwent diffusion-weighted and perfusion-weighted (PWI) magnetic resonance imaging at the acute stage and 1 week later. Eleven patients also underwent technetium-99m ethyl cysteinate dimer single-photon emission computed tomography (SPECT) at the acute stage. Relative (ischemic vs. contralateral control) cerebral blood flow (relCBF), relative cerebral blood volume, and relative mean transit time were measured in the ischemic core, in the area of infarct growth, and in the eventually viable ischemic tissue on PWI maps. The relCBF was also measured from SPECT. There was a curvilinear relationship between the relCBF measured from PWI and SPECT ( r = 0.854; P < 0.001). The tissue proceeding to infarction during the follow-up had significantly lower initial CBF and cerebral blood volume values on PWI maps ( P < 0.001) than the eventually viable ischemic tissue had. The best value for discriminating the area of infarct growth from the eventually viable ischemic tissue was 48% for PWI relCBF and 87% for PWI relative cerebral blood volume. Combined diffusion and perfusion-weighted imaging enables one to detect hemodynamically different subregions inside the initial perfusion abnormality. Tissue survival may be different in these subregions and may be predicted.


2012 ◽  
Vol 5 (suppl 1) ◽  
pp. i25-i32 ◽  
Author(s):  
Ansaar T Rai ◽  
Karthikram Raghuram ◽  
Jeffrey S Carpenter ◽  
Jennifer Domico ◽  
Gerald Hobbs

Sign in / Sign up

Export Citation Format

Share Document