Erratum: “Additive Ternary Molten Salt Systems—Calculation of Phase Diagrams from Thermodynamic Data of Lower Order Systems” [J. Electrochem. Soc., 121, 1258 (1974)]

1975 ◽  
Vol 122 (1) ◽  
pp. 82-82 ◽  
Author(s):  
Marie‐Louise Saboungi ◽  
Pierre Cerisier
1966 ◽  
Vol 5 (10) ◽  
pp. 1641-1645 ◽  
Author(s):  
Milton Blander ◽  
L. E. Topol

1974 ◽  
Vol 78 (11) ◽  
pp. 1091-1096 ◽  
Author(s):  
M. L. Saboungi ◽  
H. Schnyders ◽  
M. S. Foster ◽  
M. Blander

1984 ◽  
Vol 62 (3) ◽  
pp. 457-474 ◽  
Author(s):  
A. D. Pelton ◽  
C. W. Bale ◽  
P. L. Lin

Phase diagrams and thermodynamic properties of five additive molten salt ternary systems and nine reciprocal molten salt ternary systems containing the ions Li+, Na+, [Formula: see text], OH− are calculated from the thermodynamic properties of their binary subsystems which were obtained previously by a critical assessment of the thermodynamic data and the phase diagrams in these binary systems. Thermodynamic properties of ternary liquid phases are estimated from the binary properties by means of the Conformal Ionic Solution Theory. The ternary phase diagrams are then calculated from these thermodynamic properties by means of computer programs designed for the purpose. It is found that a ternary phase diagram can generally be calculated in this way with a maximum error about twice that of the maximum error in the binary phase diagrams upon which the calculations are based. If, in addition, some reliable ternary phase diagram measurements are available, these can be used to obtain small ternary correction terms. In this way, ternary phase diagram measurements can be smoothed and the isotherms drawn in a thermodynamically correct way. The thermodynamic approach permits experimental data to be critically assessed in the light of thermodynamic principles and accepted solution models. A critical assessment of error limits on all the calculated ternary diagrams is made, and suggestions as to which composition regions merit further experimental study are given.


Thermo ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 168-178
Author(s):  
Theodore M. Besmann ◽  
Juliano Schorne-Pinto

Molten salt reactors (MSRs) utilize salts as coolant or as the fuel and coolant together with fissile isotopes dissolved in the salt. It is necessary to therefore understand the behavior of the salts to effectively design, operate, and regulate such reactors, and thus there is a need for thermodynamic models for the salt systems. Molten salts, however, are difficult to represent as they exhibit short-range order that is dependent on both composition and temperature. A widely useful approach is the modified quasichemical model in the quadruplet approximation that provides for consideration of first- and second-nearest-neighbor coordination and interactions. Its use in the CALPHAD approach to system modeling requires fitting parameters using standard thermodynamic data such as phase equilibria, heat capacity, and others. A shortcoming of the model is its inability to directly vary coordination numbers with composition or temperature. Another issue is the difficulty in fitting model parameters using regression methods without already having very good initial values. The proposed paper will discuss these issues and note some practical methods for the effective generation of useful models.


Sign in / Sign up

Export Citation Format

Share Document