miscibility gaps
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 5)

H-INDEX

24
(FIVE YEARS 0)

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1244
Author(s):  
Tamsin E. Whitfield ◽  
George J. Wise ◽  
Ed J. Pickering ◽  
Howard J. Stone ◽  
Nicholas G. Jones

Refractory metal high entropy superalloys (RSAs) have been heralded as potential new high temperature structural materials. They have nanoscale cuboidal bcc+B2 microstructures that are thought to form on quenching through a spinodal decomposition process driven by the Ta-Zr or Nb-Zr miscibility gaps, followed by ordering of one of the bcc phases. However, it is difficult to isolate the role of different elemental interactions within compositionally complex RSAs. Therefore, in this work the microstructures produced by the Nb-Zr miscibility gap within the compositionally simpler Ti-Nb-Zr constituent system were investigated. A systematic series of alloys with compositions of Ti5NbxZr95−x (x = 25–85 at.%) was studied following quenching from solution heat treatment and long duration thermal exposures at 1000, 900 and 700 °C for 1000 h. During exposures at 900 °C and above the alloys resided in a single bcc phase field. At 700 °C, alloys with 40–75 at.% Nb resided within a three phase bcc + bcc + hcp phase field and a large misfit, 4.7–5%, was present between the two bcc phases. Evidence of nanoscale cuboidal microstructures was not observed, even in slow cooled samples. Whilst it was not possible to conclusively determine whether a spinodal decomposition occurs within this ternary system, these insights suggest that Nb-Zr interactions may not play a significant role in the formation of the nanoscale cuboidal RSA microstructures during cooling.


Langmuir ◽  
2021 ◽  
Author(s):  
Mingbei Zhu ◽  
Mai Thanh Nguyen ◽  
Yuen-ting Rachel Chau ◽  
Lianlian Deng ◽  
Tetsu Yonezawa

Author(s):  
Na Li ◽  
Qiwei Wang ◽  
Weibin Zhang ◽  
Yong Du ◽  
Jian Lv ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1418
Author(s):  
Kirill V. Yusenko ◽  
Saiana Khandarkhaeva ◽  
Maxim Bykov ◽  
Tymofey Fedotenko ◽  
Michael Hanfland ◽  
...  

Three binary fcc-structured alloys (fcc–Ir0.50Pt0.50, fcc–Rh0.66Pt0.33 and fcc–Rh0.50Pd0.50) were prepared from [Ir(NH3)5Cl][PtCl6], [Ir(NH3)5Cl][PtBr6], [Rh(NH3)5Cl]2[PtCl6]Cl2 and [Rh(NH3)5Cl][PdCl4]·H2O, respectively, as single-source precursors. All alloys were prepared by thermal decomposition in gaseous hydrogen flow below 800 °C. Fcc–Ir0.50Pt0.50 and fcc–Rh0.50Pd0.50 correspond to miscibility gaps on binary metallic phase diagrams and can be considered as metastable alloys. Detailed comparison of [Ir(NH3)5Cl][PtCl6] and [Ir(NH3)5Cl][PtBr6] crystal structures suggests that two isoformular salts are not isostructural. In [Ir(NH3)5Cl][PtBr6], specific Br…Br interactions are responsible for a crystal structure arrangement. Room temperature compressibility of fcc–Ir0.50Pt0.50, fcc–Rh0.66Pt0.33 and fcc–Rh0.50Pd0.50 has been investigated up to 50 GPa in diamond anvil cells. All investigated fcc-structured binary alloys are stable under compression. Atomic volumes and bulk moduli show good agreement with ideal solutions model. For fcc–Ir0.50Pt0.50, V0/Z = 14.597(6) Å3·atom−1, B0 = 321(6) GPa and B0’ = 6(1); for fcc–Rh0.66Pt0.33, V0/Z = 14.211(3) Å3·atom−1, B0 =259(1) GPa and B0’ = 6.66(9) and for fcc–Rh0.50Pd0.50, V0/Z = 14.18(2) Å3·atom−1, B0 =223(4) GPa and B0’ = 5.0(3).


Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 890 ◽  
Author(s):  
Nicholas Derimow ◽  
Reza Abbaschian

It has been 14 years since the discovery of the high-entropy alloys (HEAs), an idea of alloying which has reinvigorated materials scientists to explore unconventional alloy compositions and multicomponent alloy systems. Many authors have referred to these alloys as multi-principal element alloys (MPEAs) or complex concentrated alloys (CCAs) in order to place less restrictions on what constitutes an HEA. Regardless of classification, the research is rooted in the exploration of structure-properties and processing relations in these multicomponent alloys with the aim to surpass the physical properties of conventional materials. More recent studies show that some of these alloys undergo liquid phase separation, a phenomenon largely dictated by low entropy of mixing and positive mixing enthalpy. Studies posit that positive mixing enthalpy of the binary and ternary components contribute substantially to the formation of liquid miscibility gaps. The objective of this review is to bring forth and summarize the findings of the experiments which detail liquid phase separation (LPS) in HEAs, MPEAs, and CCAs and to draw parallels between HEAs and the conventional alloy systems which undergo liquid-liquid separation. Positive mixing enthalpy if not compensated by the entropy of mixing will lead to liquid phase separation. It appears that Co, Ni, and Ti promote miscibility in HEAs/CCAs/MPEAs while Cr, V, and Nb will raise the miscibility gap temperature and increase LPS. Moreover, addition of appropriate amounts of Ni to CoCrCu eliminates immiscibility, such as in cases of dendritically solidifying CoCrCuNi, CoCrCuFeNi, and CoCrCuMnNi.


2018 ◽  
Vol 28 (4) ◽  
pp. 456-463 ◽  
Author(s):  
Kenneth A. Kane ◽  
Arthur C. Reber ◽  
Shiv N. Khanna ◽  
Massimo F. Bertino
Keyword(s):  

2018 ◽  
Vol 30 (5) ◽  
pp. 1185-1199 ◽  
Author(s):  
Ioannis Tsagrakis ◽  
Elias C. Aifantis

Sign in / Sign up

Export Citation Format

Share Document