Methanol Oxidation Activity of PdRu Alloy Nanoparticles in Direct Methanol Fuel Cells

2009 ◽  
Vol 12 (5) ◽  
pp. B77 ◽  
Author(s):  
J. M. Fisher ◽  
N. Cabello-Moreno ◽  
E. Christian ◽  
D. Thompsett
Nanoscale ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 4719-4728 ◽  
Author(s):  
Yunshan Zheng ◽  
Yan Zhai ◽  
Maomao Tu ◽  
Xinhua Huang ◽  
Mingcong Shu ◽  
...  

The design and fabrication of economically viable anode catalysts for the methanol oxidation reaction (MOR) have been challenging issues in direct methanol fuel cells (DMFCs) over the decades.


2000 ◽  
Vol 6 (S2) ◽  
pp. 24-25
Author(s):  
R.M. Stroud ◽  
J.W. Long ◽  
K.E. Swider ◽  
D.R. Rolison

Direct methanol fuel cells (DMFCs) offer a simpler, safer technology for point-of-use power sources compared to other hydrogen fuel cells, by avoiding the need to store hydrogen fuel or to carry out the reformation of hydrocarbons. The direct methanol oxidation electrocatalyst of choice is a nanoscale black consisting of a 50:50 atom % mixture of Pt and Ru. It has recently become known that these presumed bimetallic alloys in fact contain an array of metal, oxide and hydrous phases, which are easily misidentified in routine x-ray diffraction measurements due to particle size-broadening and poor crystallinity. By combining transmission electron microscopy, electrochemistry and thermogravimetric studies, we demonstrate here that the route to improved catalytic activity is not by phase purification of the bimetallic alloys, but instead phase engineering of hydrous ruthenium oxide and Pt mixtures.


2016 ◽  
Vol 4 (47) ◽  
pp. 18607-18613 ◽  
Author(s):  
Jinfa Chang ◽  
Ligang Feng ◽  
Kun Jiang ◽  
Huaiguo Xue ◽  
Wen-Bin Cai ◽  
...  

A novel Pt–CoP/C electrocatalyst was developed for direct methanol fuel cells. This catalyst showed superior power density to commercial Pt/C and PtRu/C catalysts. In situ ATR-SEIRAS technology revealed that the presence of CoP in the Pt-based catalyst can promote the methanol oxidation to final CO2 products.


2010 ◽  
Vol 27 (3) ◽  
pp. 802-806 ◽  
Author(s):  
Dae Kyu Kang ◽  
Chang Soo Noh ◽  
Sang Tae Park ◽  
Jung Min Sohn ◽  
Seung Kon Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document