tin oxide
Recently Published Documents


TOTAL DOCUMENTS

9914
(FIVE YEARS 1594)

H-INDEX

137
(FIVE YEARS 17)

2022 ◽  
Vol 248 ◽  
pp. 117165
Author(s):  
Ting Liu ◽  
Wenxiao Zhang ◽  
Xiaoyu Zhai ◽  
Yunqian Ma ◽  
Yujie Chen ◽  
...  

2022 ◽  
Vol 11 (1) ◽  
pp. 15-20
Author(s):  
Parviz Saeidi ◽  
Bernhard Jakoby ◽  
Gerald Pühringer ◽  
Andreas Tortschanoff ◽  
Gerald Stocker ◽  
...  

Abstract. Plasmonic waveguides have attracted much attention owing to the associated high field intensity at the metal–dielectric interface and their ability to confine the modes at the nanometer scale. At the same time, they suffer from relatively high propagation loss, which is due to the presence of metal. Several alternative materials have been introduced to replace noble metals, such as transparent conductive oxides (TCOs). A particularly popular TCO is indium tin oxide (ITO), which is compatible with standard microelectromechanical systems (MEMS) technology. In this work, the feasibility of ITO as an alternative plasmonic material is investigated for infrared absorption sensing applications: we numerically design and optimize an ITO-based plasmonic slot waveguide for a wavelength of 4.26 µm, which is the absorption line of CO2. Our optimization is based on a figure of merit (FOM), which is defined as the confinement factor divided by the imaginary part of the effective mode index (i.e., the intrinsic damping of the mode). The obtained optimal FOM is 3.2, which corresponds to 9 µm and 49 % for the propagation length (characterizing the intrinsic damping) and the confinement factor, respectively.


Author(s):  
Emanuel Carlos ◽  
Rita Branquinho ◽  
Elina Jansson ◽  
Jaakko H Leppaniemi ◽  
José Menezes ◽  
...  

Abstract Printed metal oxide devices have been widely desired in flexible electronic applications to allow direct integration on foils and to reduce electronic waste and associated costs. Especially, semiconductor devices made from non-critical raw materials, such as Zn, Sn (and not, for example, In), have gained much interest. Despite considerable progress in the field, the upscale requirements from lab to fab scale to produce these materials and devices remain a challenge. In this work, we report the importance of solution combustion synthesis (SCS) when compared with sol-gel in the production of zinc tin oxide (ZTO) thin films using a solvent (1-methoxypropanol) that has lower environmental impact than the widely used and toxic 2-methoxyethanol. To assure the compatibility with low-cost flexible substrates in high-throughput printing techniques, a low annealing temperature of 140 ºC was achieved for these thin films by combining SCS and infrared (IR) annealing in a short processing time. These conditions allowed the transition from spin-coating (lab scale) to flexographic printing (fab scale) at a printing speed of 10 m/min in a roll-to-roll (R2R) pilot line. The ZTO (1:1 Zn:Sn-ratio) diodes show a rectification ratio of 103, a low operation voltage (≤ 3 V), promising reproducibility and low variability. The results provide the basis for further optimization (device size, encapsulation) to meet the requirements of diodes in flexible electronics applications such as passive-matrix addressing, energy harvesting and rectification.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 297
Author(s):  
Chia-Yi Huang ◽  
Shih-Hung Lin

A diffraction grating of polymer-dispersed liquid crystal (PDLC) with polarization-selective characteristics is investigated. Electrically controllable gratings are produced using In-Plane Switching (IPS) electrodes. Indium tin oxide (ITO) electrodes with a stripe pattern are used to generate a horizontal electric field parallel to the substrate on a single glass substrate. It is known from the experimental results that the number of diffraction orders can be controlled by applied voltage. Except for the zeroth order, the consistently highest intensity can be obtained for every other order of diffraction, and the polarization direction of the diffraction is perpendicular to the direction of the electrode stripes. The polarization direction of the zeroth order diffraction is parallel to the direction of the electrode stripes. Therefore, it can be used as a filter for light polarization.


Sign in / Sign up

Export Citation Format

Share Document