ni alloy
Recently Published Documents


TOTAL DOCUMENTS

2503
(FIVE YEARS 396)

H-INDEX

66
(FIVE YEARS 10)

2022 ◽  
pp. 1-9
Author(s):  
C. Lei ◽  
H. Skouby ◽  
R. Kellner ◽  
E. Goosey ◽  
M. Goosey ◽  
...  

2022 ◽  
Vol 60 (1) ◽  
pp. 62-67
Author(s):  
Jeongwook Lim ◽  
Yonghwan Kim ◽  
Yeonjoo Kim ◽  
Pungkeun Song ◽  
Ahram Kwon

In the Fourth industrial age, there is increasing use of electronic devices with high frequency (GHz) operating circuits for radio wave transmission/reception. This can lead to electromagnetic noise, and malfunctions in nearby devices. Electromagnetic shielding technology has emerged as an important way of preventing device malfunctions due to noise, and interest in shielding materials for electromagnetic waves has also increased. To allow compact integration and light weight electronic devices, highly efficient, thin and multifunctional film materials are required. This study selected the Zn-Ni alloy, which has adequate corrosion resistance, to protect the metal parent material of electronic components. Various compositions of the alloy were deposited using magnetron sputtering. Phase formation and composition were confirmed through XRD and SEM and EDS. The surface resistance of the thin films was measured using the 4point probe method, to calculate the shielding rate of the thin films. The electromagnetic wave shielding/absorption rate then measured according to frequency and the results compared with the calculated values. Corrosion resistance was evaluated with a polarization test. The far field electromagnetic shielding/absorption rate increased as the Zn content increased, up to 52 dB in a film with 70 at% of Zn. Corrosion resistivity behavior was the opposite. However, the Ni5Zn21 phase formation, which occurred in films with lower Zn composition, helped to improve electromagnetic absorption in the near field as well as corrosion resistivity. Therefore, the optimum composition of the Zn-Ni films was provisionally determined to be around Ni: Zn = 43:57 for electronic devices using electromagnetic waves in the near field range.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 96
Author(s):  
Ameeq Farooq ◽  
Sohaib Ahmad ◽  
Kotiba Hamad ◽  
Kashif Mairaj Deen

This research work aims to develop electrodeposited Zn-Ni alloy coatings with controlled dissolution tendencies on a mild steel substrate. The varying Ni concentration in the electroplating bath, i.e., 10, 15, 20 and 25 g·L−1, affected the surface morphology and electrochemical properties of the deposited Zn-Ni alloy coatings. SEM and EDS analysis revealed the resulting variation in surface morphology and composition. The electrochemical behavior of different coatings was evaluated by measuring the open circuit potential and cyclic polarization trends in 3.5 wt.% NaCl solution. The degradation behavior of the electrodeposited Zn-Ni coatings was estimated by conducting a salt spray test for 96 h. The addition of Ni in the coating influenced the coating thickness and surface morphology of the coatings. The coating thickness decreased from 38.2 ± 0.5 μm to 20.7 ± 0.5 μm with the increase in Ni concentration. Relatively negative corrosion potential (<−1074 ± 10 mV) of the Zn-Ni alloy coatings compared to the steel substrate (−969 mV) indicated the sacrificial dissolution behavior of the Zn-rich coatings. On the other hand, compared to the pure Zn (26.12 mpy), ~4 times lower corrosion rate of the Zn-Ni coating (7.85 mpy) was observed by the addition of 25 g·L−1 Ni+2 in the bath solution. These results highlighted that the dissolution rate of the sacrificial Zn-Ni alloy coatings can effectively be tuned by the addition of Ni in the alloy coating during the electrodeposition process.


Coatings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 6
Author(s):  
Fan Zhang ◽  
Peng Yin ◽  
Qunfeng Zeng ◽  
Jianmei Wang

In the present paper, the influences of high temperature on the tribological properties of phenolic resin graphite (PRG) sliding against tungsten carbide-nickel (WC-Ni) alloy in ambient air were investigated systematically. Results demonstrated that the antifriction behaviors of PRG was sensitive to high temperature and PRG exhibits ultra-low coefficient of friction (CoF) of about 0.01–0.015. The low CoF is attributed to the formation of graphite tribofilms, which shows different formation processes on the contact interface at different temperatures (room temperature, 200, 300 and 400 °C). These findings provide insight into the formation mechanism of graphite tribofilms, and provide an important basis for improving the tribological properties of graphite-based friction materials and manufacturing new graphite for seal applications.


Author(s):  
Yucheng Wu ◽  
Kun Xu ◽  
Zhaoyang Zhang ◽  
Xueren Dai ◽  
Douyan Zhao ◽  
...  

Author(s):  
Yiqiang Hao ◽  
Lei Zhou ◽  
Zhiqing Chen ◽  
Zhixian Zhao ◽  
Bin Chen

Sign in / Sign up

Export Citation Format

Share Document