Effect of TiO2 Langmuir-Blodgett Monolayer as a Blocking Layer on Performance of Dye-Sensitized Solar Cell

2017 ◽  
Vol 631 ◽  
pp. 141-146 ◽  
Author(s):  
Yiying Qin ◽  
Zhiqiang Hu ◽  
Boon Han Lim ◽  
Bin Yang ◽  
Kok-Keong Chong ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2690
Author(s):  
Dariusz Augustowski ◽  
Paweł Kwaśnicki ◽  
Justyna Dziedzic ◽  
Jakub Rysz

The main efficiency loss is caused by an intensive recombination process at the interface of fluorine-doped tin oxide (FTO) and electrolyte in dye-sensitized solar cells. Electrons from the photoanode can be injected back to the redox electrolyte and, thus, can reduce the short circuit current. To avoid this, the effect of the electron blocking layer (EBL) was studied. An additional thin film of magnetron sputtered TiO2 was deposited directly onto the FTO glass. The obtained EBL was characterized by atomic force microscopy, scanning electron microscopy, optical profilometry, energy dispersive spectroscopy, Raman spectroscopy and UV-VIS-NIR spectrophotometry. The results of the current–voltage characteristics showed that both the short circuit current (Isc) and fill factor (FF) increased. Compared to traditional dye-sensitized solar cell (DSSC) architecture, the power conversion efficiency (η) increased from 4.67% to 6.07% for samples with a 7 × 7 mm2 active area and from 2.62% to 3.06% for those with an area of 7 × 80 mm2.


Sign in / Sign up

Export Citation Format

Share Document