scholarly journals Magnetron Sputtered Electron Blocking Layer as an Efficient Method to Improve Dye-Sensitized Solar Cell Performance

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2690
Author(s):  
Dariusz Augustowski ◽  
Paweł Kwaśnicki ◽  
Justyna Dziedzic ◽  
Jakub Rysz

The main efficiency loss is caused by an intensive recombination process at the interface of fluorine-doped tin oxide (FTO) and electrolyte in dye-sensitized solar cells. Electrons from the photoanode can be injected back to the redox electrolyte and, thus, can reduce the short circuit current. To avoid this, the effect of the electron blocking layer (EBL) was studied. An additional thin film of magnetron sputtered TiO2 was deposited directly onto the FTO glass. The obtained EBL was characterized by atomic force microscopy, scanning electron microscopy, optical profilometry, energy dispersive spectroscopy, Raman spectroscopy and UV-VIS-NIR spectrophotometry. The results of the current–voltage characteristics showed that both the short circuit current (Isc) and fill factor (FF) increased. Compared to traditional dye-sensitized solar cell (DSSC) architecture, the power conversion efficiency (η) increased from 4.67% to 6.07% for samples with a 7 × 7 mm2 active area and from 2.62% to 3.06% for those with an area of 7 × 80 mm2.

2015 ◽  
Vol 793 ◽  
pp. 450-454 ◽  
Author(s):  
N. Gomesh ◽  
R. Syafinar ◽  
Muhamad Irwanto ◽  
Y.M. Irwan ◽  
M. Fareq ◽  
...  

Dye-sensitized solar cell (DSSC) consists of TiO2 nanoporous coating which acts as a photo electrode, a sensitizer of dye molecules soaked in the TiO2 film, liquid electrolyte and a counter electrode. This paper focuses on the usage of a sensitizer from the Pitaya fruit. Pitaya or commonly known as dragon fruit (Hylocereus polyrhizus) was extracted and used as a sensitizer to fabricate the dye sensitized solar cell (DSSC). The photoelectrochemical performance of Pitaya based solar cell shows an open circuit voltage (VOC) of 237 mV, short circuit current (ISC) of 4.98 mA, fill factor (FF) of 0.51, solar cell efficiency (η) of 0.70 % and has a peak absorbance rate of 2.7 at 550 nm. The photoelectrochemical and UV-Visible light absorbance performance of Pitaya-DSSC shows good potential in future solar cell fabrication.


2014 ◽  
Vol 1070-1072 ◽  
pp. 616-619
Author(s):  
Wen Bo Xiao ◽  
Jin Dai ◽  
Guo Hua Tu ◽  
Hua Ming Wu

The dye-sensitized solar cell performances influenced by radiant intensity and illuminated area in concentrating photovoltaic system are investigated experimentally and discussed theoretically. The results show that, under the same irradiated cells area, the short-circuit current is linearly increasing with the radiant intensity and the open-circuit voltage follows a logarithmic function of the radiant intensity. And, it is turned out that the short-circuit current and open-circuit voltage are obviously enhanced by increasing the illuminated cells surface area at the same radiant intensity. However, that growth trends will decline with an increase of the illuminated area. The reason is more defects involved in the process of increasing illumination area. All results can be interpreted using an equivalent circuit of a single diode model. A good agreement can be observed from the fitting curves. It is of great significance for current photovoltaic research.


2021 ◽  
Author(s):  
Rajat Biswas ◽  
Suman Chatterjee

Abstract Effective suppression of dye aggregation on the photoanode surface of dye sensitized solar cell plays a key role in improving the solar cell efficiency. Chenodeoxycholic acid (CDCA) is a very popular anti dye aggregation material used in Dye sensitized solar cells. However, the selection of an improper concentration of CDCA may lead to decreased solar cell efficiency by lowering the open circuit voltage and short circuit current as a consequence of reduced dye loading. The influence of chenodeoxycholic acid (CDCA) as a dye co-adsorbent on the performance of DSSCs fabricated using Rose Bengal dye was studied in this paper. The concentration of the CDCA solution was varied to identify the optimum value for the best device performance. Aside from this, the effect of a very thin and compact ZnO blocking layer was also investigated to reduce the recombination. With photovoltaic parameters such as short circuit current density (Jsc) = 1.98 mA/cm2, open circuit voltage (Voc) = 0.58 V, and fill factor (FF) = 0.43, the traditional cell displayed an overall conversion efficiency of 0.50 %, while the power conversion efficiency was found to be increased to 0.97 % ( Jsc = 2.80 mA/cm2, Voc= 0.64, FF = 0.58 ) when CDCA was added at optimised concentration of 8 mM. Reduced dye aggregation and increased electron injection in the presence of CDCA may be accounted for the DSSC's remarkable improvement in efficiency. Moreover, the combined effect of 8 mM CDCA and the compact ZnO blocking layer dramatically enhanced the efficiency further to 1.23 % (Jsc = 3.09 mA/cm2, Voc= 0.66, FF = 60 ). Electrochemical impedance spectroscopic (EIS) analysis revealed that the addition of CDCA as a co-adsorbent in the dye solution and addition of ZnO blocking layer resulted in significantly improved electron lifetime and reduced electron recombination yielding improved Jsc, Voc and η.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Md. Akhtaruzzaman ◽  
Ashraful Islam ◽  
Mohammad Rezaul Karim ◽  
A. K. Mahmud Hasan ◽  
Liyuan Han

Indoline dyeD-1was successfully applied as a cosensitizer for improving the spectral response of black dye in dye-sensitized solar cells (DSCs). It was observed thatD-1effectively increases the short-circuit photocurrent by offsetting the competitive light absorption byI/I3-electrolyte in the wavelength region 350–500 nm when adsorbed on the TiO2nanocrystaline films in a mix dye system. The DSCs containing theD-1and black dye achieved a power conversion efficiency of 9.80% with higher short-circuit photocurrent of 19.54 mA/cm2compared to the system of black dye without cosensitization under standard AM 1.5 sunlight.


2014 ◽  
Vol 32 (4) ◽  
pp. 547-554 ◽  
Author(s):  
Hatem El-Ghamri ◽  
Taher El-Agez ◽  
Sofyan Taya ◽  
Monzir Abdel-Latif ◽  
Amal Batniji

AbstractThe application of natural dyes extracted from plant seeds in the fabrication of dye-sensitized solar cells (DSSCs) has been explored. Ten dyes were extracted from different plant seeds and used as sensitizers for DSSCs. The dyes were characterized using UV-Vis spectrophotometry. DSSCs were prepared using TiO2 and ZnO nanostructured mesoporous films. The highest conversion efficiency of 0.875 % was obtained with an allium cepa (onion) extract-sensitized TiO2 solar cell. The process of TiO2-film sintering was studied and it was found that the sintering procedure significantly affects the response of the cell. The short circuit current of the DSSC was found to be considerably enhanced when the TiO2 semiconducting layer was sintered gradually.


2017 ◽  
Vol 1 (6) ◽  
pp. 1059-1072 ◽  
Author(s):  
N. Prachumrak ◽  
T. Sudyoadsuk ◽  
A. Thangthong ◽  
P. Nalaoh ◽  
S. Jungsuttiwong ◽  
...  

Three new D–π–A dyes containing different numbers of triphenylamine donor substitutions on a π-linker were synthesized for dye-sensitized solar cells.


2019 ◽  
Vol 26 (03) ◽  
pp. 1850164 ◽  
Author(s):  
SWATI S. KULKARNI ◽  
S. S. HUSSAINI ◽  
GAJANAN A. BODKHE ◽  
MAHENDRA D. SHIRSAT

Titanium dioxide (TiO[Formula: see text] nanoparticles have been synthesized by the cost effective Sol–Gel technique. Characteristics of TiO2 nanoparticles were investigated by X-ray diffraction and Fourier Transform Infrared spectroscopy. The Eosin Y dye and dye extracted from Hibiscus tea have been successfully used in fabrication of the dye sensitized solar cell. The photovoltaic performance of the dye sensitized solar cell indicates that the short circuit photo current, open circuit voltage and efficiency of the DSSC using Eosin Y dye is 10 times more compared to the DSSC using the Hibiscus dye.


2012 ◽  
Vol 581-582 ◽  
pp. 391-395
Author(s):  
Wei Cong ◽  
En Xiang Han ◽  
Jiang Li

TiO2nanotube arrays were fabricated by anodic oxidation. It was studied that the influences of the parameters for the preparation of TiO2nanotube arrays on the micrograph of the material, such as anodizing potential, annealing temperature. Then it is used in the dye sensitized solar cell (DSSC).The microstructures and morphologies of the TiO2nanotubes were investigated by scanning electron microscopy (SEM) and x-ray diffraction (XRD). The results show that TiO2 nanotubes arrays were fabricated when anodizing voltage is 20V. The photoelectric conversion efficiencySubscript textof DSSC made by this structure is 1.53%, the open voltage is 0.734V, short-circuit current is 4.52mA, fill factor is 0.460.


2011 ◽  
Vol 415-417 ◽  
pp. 1586-1589
Author(s):  
Yu Hua Dai ◽  
Xiao Lei Sun ◽  
Jing Lian Wang ◽  
Ming Shan Yang

A series of copolymers P(VP-HEMA) composed of hydroxyl ethyl methacrylate (HEMA) and 4-vinyl pyridine (VP) were prepared by a solution copolymerization technique. Based on the copolymer P(VP-HEMA) prepared by the content of VP 50%, the amount of AIBN 3% and the optimized liquid electrolyte, a polymer solution electrolyte with concentration of 9.0% was formed. By addition of 1,4-dibromobutane into the solution, the copolymer gel electrolyte with higher conductivity 6.14mS/cm was prepared. Gelation is caused by the quaterisation between the group of pyridine in P(HEMA-VP) and 1,4-dibromobutane. Based on the copolymer gel electrolyte, a dye-sensitized solar cell was fabricated with short-circuit current of 13.62mA/cm2,open circuit voltage of 0.72V, fill factor of 0.5465 and an overall conversion efficiency of 5.24% under irradiation 100mW/cm2(AM1.5).


Sign in / Sign up

Export Citation Format

Share Document