Membrane Material Design for PEM Fuel Cells

Author(s):  
Raymond H. Puffer ◽  
Glen H. Hoppes

Despite the fact that the invention of the fuel cell is more than 160 years old, the fuel cell industry today is still in its infancy. While there are many large companies active in the industry, it is, for the most part, dominated by many small and startup companies focused on the design and development of fuel cell systems. Relatively little attention has been given to the cost effective high-volume (i.e., automated) manufacture of the resulting systems and components. If the wide spread commercial use of fuel cells is to become a reality, and we are to realize the potential benefits to our environment and mankind it is essential that we also put the appropriate level of attention on the enabling manufacturing technologies. Celanese Ventures GmbH is a “new venture” arm of Celanese AG, located in Frankfurt, Germany. They are focused on developing the market for their high temperature polybenzimidazole (PBI®)-based membrane material for use in Proton Exchange Membrane (PEM) fuel cells. Several years ago Celanese realized that the best way to ensure the market for their membrane material is to develop the capability to produce complete membrane electrode assemblies (MEAs) that can be incorporated into fuel cell systems being developed by other companies. Furthermore, such value-added processing can be economically advantageous. This paper will describe the multi-phased collaboration between Celanese, the Flexible Manufacturing Center (FMC) located at Rensselaer Polytechnic Institute (RPI), and Progressive Machine and Design (PMD) to develop a fully automated high temperature MEA pilot manufacturing line that began operation in September, 2002. The FMC has and continues to serve in a unique role for a university research center. The FMC has been involved in the concept development, laboratory proof of principle, acquisition management, technical representation during the design, build and implementation phases, and the ongoing optimization of and improvements to the operational pilot line. We will describe the unique properties of the high temperature PBI® membrane and the benefits of this form of membrane in PEM fuel cell operations. The specific role of the FMC during each phase of the project will be highlighted, and a description of the resulting pilot line will be provided. Finally, we will discuss the important role that effective technology transfer plays in a project with the magnitude and complexity described herein.


Author(s):  
David A. Dillard ◽  
Shu Guo ◽  
Michael W. Ellis ◽  
John J. Lesko ◽  
John G. Dillard ◽  
...  

Fuel cells have significant potential to improve energy utilization efficiency, but remain quite expensive due to the cost of key components, including the membrane of PEM fuel cells, the catalyst, and the bipolar plates. Due to the cost and significance of these items, extensive research has been devoted to reducing cost and improving the quality and performance of these components. By contrast, seals, sealants, and adhesives play a more mundane role in the overall performance of fuel cells, and yet the failure of these materials can lead to reduced system efficiency, system failure, or even safety concerns. Less attention has been given to the performance and durability of these products, yet as improvements in other fuel cell components are made, these seals are becoming a more critical link in the long term performance of fuel cells. This review paper highlights the importance and background of fuel cell seals; discusses the chemical, thermal, and mechanical environments to which fuel cell seals are subjected; and suggests design and testing protocol improvements that may lead to improved fuel cell system performance.


Sign in / Sign up

Export Citation Format

Share Document