Macromolecular Design Strategies for Long-Lived and Energy Efficient All-Organic Redox-Flow Batteries

2020 ◽  
Vol MA2020-02 (2) ◽  
pp. 208-208
Author(s):  
Vladimir Neburchilov ◽  
Ken Tsay ◽  
Khalid Fatih ◽  
Roberto Neagu ◽  
Oltion Kodra ◽  
...  

2021 ◽  
Author(s):  
M. Raja ◽  
Harun Khan ◽  
Shrihari Sankarasubramanian ◽  
Deepak Sonawat ◽  
Vijay Ramani ◽  
...  

2017 ◽  
Vol 56 (6) ◽  
pp. 1595-1599 ◽  
Author(s):  
Sean E. Doris ◽  
Ashleigh L. Ward ◽  
Artem Baskin ◽  
Peter D. Frischmann ◽  
Nagarjuna Gavvalapalli ◽  
...  

2021 ◽  
Author(s):  
Kevin Tenny ◽  
Richard Braatz ◽  
Yet- Ming Chiang ◽  
Fikile Brushett

Redox flow batteries are a nascent, yet promising, energy storage technology for which widespread deployment is hampered by technical and economic challenges. A performance-determining component in the reactor, present-day electrodes are often borrowed from adjacent electrochemical technologies rather than specifically designed for use in flow batteries. A lack of structural diversity in commercial offerings, coupled with the time constraints of wet-lab experiments, render broad electrode screening infeasible without a modeling complement. Herein, an experimentally validated model of a vanadium redox flow cell is used to generate polarization data for electrodes with different macrohomogeneous properties (thickness, porosity, volumetric surface area, and kinetic rate constant). Using these data sets, we then build and train a neural network with minimal average root-mean squared testing error (17.9 ± 1.8 mA cm<sup>−2</sup>) to compute individual parameter sweeps along the cell polarization curve. Finally, we employ a genetic algorithm with the neural network to ascertain electrode property values for improving cell power density. While the developed framework does not supplant experimentation, it is generalizable to different redox chemistries and may inform future electrode design strategies.


2021 ◽  
Author(s):  
Kevin Tenny ◽  
Richard Braatz ◽  
Yet- Ming Chiang ◽  
Fikile Brushett

Redox flow batteries are a nascent, yet promising, energy storage technology for which widespread deployment is hampered by technical and economic challenges. A performance-determining component in the reactor, present-day electrodes are often borrowed from adjacent electrochemical technologies rather than specifically designed for use in flow batteries. A lack of structural diversity in commercial offerings, coupled with the time constraints of wet-lab experiments, render broad electrode screening infeasible without a modeling complement. Herein, an experimentally validated model of a vanadium redox flow cell is used to generate polarization data for electrodes with different macrohomogeneous properties (thickness, porosity, volumetric surface area, and kinetic rate constant). Using these data sets, we then build and train a neural network with minimal average root-mean squared testing error (17.9 ± 1.8 mA cm<sup>−2</sup>) to compute individual parameter sweeps along the cell polarization curve. Finally, we employ a genetic algorithm with the neural network to ascertain electrode property values for improving cell power density. While the developed framework does not supplant experimentation, it is generalizable to different redox chemistries and may inform future electrode design strategies.


2017 ◽  
Vol 129 (6) ◽  
pp. 1617-1621 ◽  
Author(s):  
Sean E. Doris ◽  
Ashleigh L. Ward ◽  
Artem Baskin ◽  
Peter D. Frischmann ◽  
Nagarjuna Gavvalapalli ◽  
...  

2018 ◽  
Vol 6 (28) ◽  
pp. 13874-13882 ◽  
Author(s):  
Lauren E. VanGelder ◽  
Ellen M. Matson

Heterometal functionalization within a polyoxovanadate-alkoxide cluster significantly increases the solubility and cell voltage, highlighting design strategies for nonaqueous, energy dense charge carriers.


Sign in / Sign up

Export Citation Format

Share Document