kinetic rate constant
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 36)

H-INDEX

12
(FIVE YEARS 3)

Gels ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 13
Author(s):  
Anamaria Birkić ◽  
Davor Valinger ◽  
Ana Jurinjak Jurinjak Tušek ◽  
Tamara Jurina ◽  
Jasenka Gajdoš Gajdoš Kljusurić ◽  
...  

The use of alginate microcapsules has often been mentioned as one of the ways to remove dyes from waste solvents, water and materials from the food industry. In addition, alginate can be used as a wall material for the microencapsulation of food dyes and their further application in the food industry. The aims of this study were to: (i) determine the effect of the alginate concentration (1, 2, 3 and 4%) on the ability of the adsorption and desorption of natural beetroot red dye and (ii) evaluate the kinetic parameters of the adsorption and desorption process, as well as the factors affecting and limiting those processes. According to the obtained results, the viscosity of alginate solutions increased with an increase in the alginate concentration. Based on k2 values (the pseudo-second order kinetic rate constant), when a more concentrated solution of alginate was used in the adsorption process, the beads adsorbed a smaller amount of dye. Furthermore, based on the values for n derived from the Korsmeyer–Peppas model, the dye release rates (k) were higher for beads made with lower alginate concentrations, and this release was governed by a pseudo-Fickian diffusion mechanism (n values ranged from 0.2709 to 0.3053).


2021 ◽  
Vol 12 (1) ◽  
pp. 34
Author(s):  
Fatemah. H. Alkallas ◽  
Amira Ben Gouider Trabelsi ◽  
Ramzi Nasser ◽  
Susana Fernandez ◽  
Ji-Ming Song ◽  
...  

Chromium (Cr)-doped zinc oxide (ZnO) nanorods with wurtzite hexagonal structure were prepared through a thermal decomposition technique. The concentration effect of the Cr doping on the structural, morphological, and optical properties of the ZnO nanorods was established by correlating various measurements: transmission electron microscopy (TEM), photoluminescence (PL), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and several UV-visible studies. The obtained nanorods were investigated as photocatalysts for the photodegradation process of methyl orange (MO), under UV-vis light illumination. Different weights and time intervals were studied. A 99.8% photodegradation of MO was obtained after 100 min in the presence of 1 wt.% Cr III acetate hydroxide and zinc acetate dehydrate “ZnO-Cr1”. The kinetic rate constant of the reaction was found to be equal to 4.451 × 10−2 min−1 via a pseudo-first order rate model. Scavenger radicals demonstrated the domination of OH• radicals by those of O2•− superoxide species during the photodegradation. The interstitial oxygen site Oi is proposed to play a key role in the generation of holes in the valence band under visible irradiation. The ZnO-Cr1 photocatalyst displayed good cycling stability and reusability.


2021 ◽  
Author(s):  
Kaidong Song ◽  
Bing Ren ◽  
Yingnan Zhai ◽  
Wenxuan Chai ◽  
Yong Huang

Abstract Three-dimensional (3D) bioprinting has emerged as a powerful engineering approach for various tissue engineering applications, particularly for the development of 3D cellular structures with unique mechanical and/or biological properties. For the jammed gelatin microgel-gelatin solution composite bioink, comprising a discrete phase of microgels (enzymatically gelled gelatin microgels) and a cross-linkable continuous gelatin precursor solution-based phase containing transglutaminase (TG), its rheology properties and printability change gradually due to the TG enzyme-induced cross-linking process. The objective of this study is to establish a direct mapping between the printability of the gelatin microgel-gelatin solution based cross-linkable composite bioink and the TG concentration and cross-linking time, respectively. Due to the inclusion of TG in the composite bioink, the bioink starts cross-linking once prepared and is usually prepared right before a printing process. Herein, the bioink printability is evaluated based on the three metrics: injectability, feature formability, and process-induced cell injury. In this study, the rheology properties such as the storage modulus and viscosity have been first systematically investigated and predicted at different TG concentrations and times during the cross-linking process using the first-order cross-linking kinetics model. The storage modulus and viscosity have been satisfactorily modeled as exponential functions of the TG concentration and time with an experimentally calibrated cross-linking kinetic rate constant. Furthermore, the injectability, feature formability, and process-induced cell injury have been successfully correlated to the TG concentration and cross-linking time via the storage modulus, viscosity, and/or process-induced shear stress. By combing the good injectability, good feature formability, and satisfactory cell viability zones, a good printability zone (1.65, 0.61, and 0.31 hours for the composite bioinks with 1.00, 2.00, and 4.00% w/v TG, respectively) has been established during the printing of mouse fibroblast-based 2% gelatin B microgel-3% gelatin B solution composite bioink. This printability zone approach can be extended to the use of other cross-linkable bioinks for bioprinting applications.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6973
Author(s):  
Piotr Szperlich

Interest in pyroelectrics and piezoelectrics has increased worldwide on account of their unique properties. Applications based on these phenomena include piezo- and pyroelectric nanogenerators, piezoelectric sensors, and piezocatalysis. One of the most interesting materials used in this growing field are A15B16C17 nanowires, an example of which is SbSI. The latter has an electromechanical coupling coefficient of 0.8, a piezoelectric module of 2000 pC/N, and a pyroelectric coefficient of 12 × 10−3 C/m2K. In this review, we examine the production and properties of these nanowires and their composites, such as PAN/SbSI and PVDF/SbSI. The generated electrical response from 11 different structures under various excitations, such as an impact or a pressure shock, are presented. It is shown, for example, that the PVDF/SbSI and PAN/SbSI composites have well-arranged nanowires, the orientation of which greatly affects the value of its output power. The power density for all the nanogenerators based upon A15B16C17 nanowires (and their composites) are recalculated by use of the same key equation. This enables an accurate comparison of the efficiency of all the configurations. The piezo- and photocatalytic properties of SbSI nanowires are also presented; their excellent ability is shown by the high reaction kinetic rate constant (7.6 min−1).


2021 ◽  
Author(s):  
Naoki Toyama ◽  
Hiroe Kimura ◽  
Naoyuki Matsumoto ◽  
Shinnosuke Kamei ◽  
Don N. Futaba ◽  
...  

Abstract In this study, we synthesised the Ni/single-walled carbon nanotube prepared by the super-growth method (SG-SWCNTs). In this approach, the Ni nanoparticles were immobilised by an impregnation method using the SG-SWCNTs with high specific surface areas (1144 m2g-1). The scanning electron microscopy images confirmed that the SG-SWCNTs exhibit the fibriform morphology corresponding to the carbon nanotubes. In addition, component analysis of the obtained samples clarified that the Ni nanoparticles were immobilised on the surface of the SG-SWCNTs. Next, we evaluated the activity for the reduction of 4-nitoropenol in the presence of the Ni/SG-SWCNTs. Additionally, the Ni/graphene, which was obtained by the same synthetic method, was utilised in this reaction. The rate of reaction activity of the Ni/SG-SWCNTs finished faster than that of the Ni/GPs. From this result, the pseudo-first-order kinetic rate constant k for the Ni/SG-SWCNTs and the Ni/GPs was calculated respectively at 0.083 min-1 and 0.070 min-1, indicating that the Ni/SG-SWCNTs exhibits higher activity.


2021 ◽  
Author(s):  
Sue Jiun Phang ◽  
Jiale Lee ◽  
Voon-Loong Wong ◽  
Lling-Lling Tan ◽  
Siang-Piao Chai

Abstract Carbon quantum dots (CQDs) are particularly sought after for their highly tailorable photoelectrochemical and optical properties. Simultaneously, graphitic carbon nitride (g-C3N4) has also gained widespread attention due to its suitable band gap energy as well as excellent chemical and thermal stabilities. Herein, a novel boron-doped CQD (BCQD) hybridized g-C3N4 homojunction (CN) nanocomposite was rationally engineered and fabricated via a facile hydrothermal route. The optimal photocatalyst sample, 1-BCQD/CN (with a 1:3 mass ratio of boron to CQD) accomplished a Rhodamine B (RhB) degradation efficiency of 97.0 % within 4 hours under low-powered LED light irradiation. The kinetic rate constant of 1.39 x 10-2 min-1 achieved by the optimum sample was found to be 3.6- and 2.8-folds higher than that of pristine CN and un-doped CQD/CN, respectively. Furthermore, 1-BCQD/CN demonstrated remarkable stability, where it retained close to 99.0% of its initial photocatalytic efficiency after three consecutive cycles. The marked improvement in photocatalytic performance of 1-BCQD/CN was attributed to several concomitant factors such as enhanced electron migration from CN to BCQD, suppressed electron-hole recombination and significantly higher charge density in facilitating charge migration. Based on the scavenging tests, it was revealed that the photogenerated holes (h+), superoxide anions (∙O2–) and hydroxyl radicals (∙OH) were the primary reactive species responsible for the photodegradation process. Overall, the highly efficient 1-BCQD/CN composite with excellent photocatalytic activity could provide a cost-effective and robust means for addressing the increasing concerns over global environmental pollution.


2021 ◽  
Vol 3 ◽  
Author(s):  
Rohit Ranjan Srivastava ◽  
Pramod Kumar Vishwakarma ◽  
Umakant Yadav ◽  
Suyash Rai ◽  
Sima Umrao ◽  
...  

Wastewater produced by the textile industry contains various dyes and organic compounds that directly or indirectly affect surface water or groundwater pollution. Visible-light-driven semiconductor photocatalysis is the leading pathway for the degradation of environmental pollutants. Herein we report the bottom-up hydrothermal growth of 2D tin disulfide nanostructures (SnS2 NSs) for the efficient photodegradation of organic pollutants such as Rhodamine B (Rh.B) and Methyl Violet (M.V) in an aqueous medium under visible light (λ > 400 nm) irradiation. The as-synthesized SnS2 NSs were characterized by various structural, morphological, and optical techniques such as XRD, RAMAN, TEM, UV–Vis, Brunauer–Emmett–Teller, etc. Furthermore, the low bandgap (∼1.6 eV), the high surface area (56 m2/g), and the anionic nature of SnS2 NSs attribute to it as an efficient photocatalyst for photocatalytic applications. The photocatalytic properties of SnS2 NSs showed good degradation efficiency of 94 and 99.6% for Rh. B and M.V, respectively, in 25 min. The kinetic rate constant of these dyes was estimated by using the Langmuir–Hinshelwood model. Here we also performed the recyclability test of the photocatalyst and discussed the plausible mechanism for the photocatalytic degradation of organic pollutants. The XPS spectra of SnS2 NSs were studied before and after the photodegradation of Rh.B and M.V, indicating the high stability of the photocatalyst. Moreover, in vitro cytotoxicity was also evaluated against human cervical cancer cell lines (HeLa cells) with different concentrations (0–1,000 μg/ml) of as-synthesized SnS2 NSs. This intended work provides a possible treatment for the degradation of organic pollutants under visible light to balance the aquatic ecosystems.


2021 ◽  
Author(s):  
Yun Chen ◽  
Jinquan Wan ◽  
Yongwen Ma ◽  
Yan Wang ◽  
Zhicheng Yan ◽  
...  

Abstract Antibiotics pose a great threat to ecological environment and human health, which should remove with an efficient innovative treatment method. Here in, a photoelectrocatalytic strategy for persulfate activation by BiVO4 photoanode had been systematically researched in this work. In the presence of PS, the degradation efficiency of sulfamethoxazole (SMX) reached to 97.3% within 100 min, whereas the kinetic rate constant was 0.0388 min− 1, which was about 7.05 times higher than no addition of PS (0.0055 min− 1). Open circuit potential (OCP), electrochemical impedance spectroscopy (EIS) and linear sweep voltammetry (LSV) were measured, suggesting that PS played a photoelectron acceptor for improving the separation of photogenerated holes and electrons and accelerating charge transfer. The radical quenching experiments and EPR tests indicated that holes and superoxide were dominant reactive oxidation species by directly oxidation pollutants. Indirect transfer pathway of S2O82− for producing hydroxyl radicals played a minor role, while only a small amount of sulfate radical was produced. Mixed pollutants with three antibiotics (ciprofloxacin (CIP), tetracycline (TC) and SMX) had been further degraded. Results showed that the degradation of SMX was inhibited in a content compared to a single pollutant, but both TC and CIP showed satisfactory removal effects, especially in natural water. Liquid chromatography-mass spectroscopy (LC-MS) was used to determine the intermediates of SMX (with 7 intermediates), CIP (with 11 intermediates) and TC (with 19 intermediates) in the PEC system. This work provides an eco-friendly and efficient method for antibiotic removal, which has good application prospect in the degradation of mixed pollutants.


Author(s):  
Zheyong Li ◽  
Yajun Yuan ◽  
Lin Ma ◽  
Yihui Zhang ◽  
Hongwei Jiang ◽  
...  

Selenium (Se) is an essential and crucial micronutrient for humans and animals, but excessive Se brings negativity and toxicity. The adsorption and oxidation of Se(IV) on Mn-oxide surfaces are important processes for understanding the geochemical fate of Se and developing engineered remediation strategies. In this study, the characterization of simultaneous adsorption, oxidation, and desorption of Se(IV) on δ-MnO2 mineral was carried out using stirred-flow reactors. About 9.5% to 25.3% of Se(IV) was oxidized to Se(VI) in the stirred-flow system in a continuous and slow process, with the kinetic rate constant k of 0.032 h−1, which was significantly higher than the apparent rate constant of 0.0014 h−1 obtained by the quasi-level kinetic fit of the batch method. The oxidation reaction was driven by proton concentration, and its rate also depended on the Se(IV) influent concentration, flow rate, and δ-MnO2 dosage. During the reaction of Se(IV) and δ-MnO2, Mn(II) was produced and adsorbed strongly on Mn oxide surfaces, which was evidenced by the total reflectance Fourier transform infrared (ATR-FTIR) results. The X-ray photoelectron spectroscopy (XPS) data indicated that the reaction of Se(VI) on δ-MnO2 produced Mn(III) as the main product. These results contribute to a deeper understanding of the interface chemical process of Se(IV) with δ-MnO2 in the environment.


Sign in / Sign up

Export Citation Format

Share Document