Employing Neural Network Regression Models to Screen the Electrode Design Space for Redox Flow Batteries

2020 ◽  
Vol MA2020-02 (2) ◽  
pp. 219-219
Author(s):  
Kevin M. Tenny ◽  
Yet-Ming Chiang ◽  
Fikile R. Brushett
2015 ◽  
Vol 163 (1) ◽  
pp. A5163-A5169 ◽  
Author(s):  
C. R. Dennison ◽  
Ertan Agar ◽  
Bilen Akuzum ◽  
E. C. Kumbur

2021 ◽  
Author(s):  
Kevin Tenny ◽  
Richard Braatz ◽  
Yet- Ming Chiang ◽  
Fikile Brushett

Redox flow batteries are a nascent, yet promising, energy storage technology for which widespread deployment is hampered by technical and economic challenges. A performance-determining component in the reactor, present-day electrodes are often borrowed from adjacent electrochemical technologies rather than specifically designed for use in flow batteries. A lack of structural diversity in commercial offerings, coupled with the time constraints of wet-lab experiments, render broad electrode screening infeasible without a modeling complement. Herein, an experimentally validated model of a vanadium redox flow cell is used to generate polarization data for electrodes with different macrohomogeneous properties (thickness, porosity, volumetric surface area, and kinetic rate constant). Using these data sets, we then build and train a neural network with minimal average root-mean squared testing error (17.9 ± 1.8 mA cm<sup>−2</sup>) to compute individual parameter sweeps along the cell polarization curve. Finally, we employ a genetic algorithm with the neural network to ascertain electrode property values for improving cell power density. While the developed framework does not supplant experimentation, it is generalizable to different redox chemistries and may inform future electrode design strategies.


2021 ◽  
Author(s):  
Kevin Tenny ◽  
Richard Braatz ◽  
Yet- Ming Chiang ◽  
Fikile Brushett

Redox flow batteries are a nascent, yet promising, energy storage technology for which widespread deployment is hampered by technical and economic challenges. A performance-determining component in the reactor, present-day electrodes are often borrowed from adjacent electrochemical technologies rather than specifically designed for use in flow batteries. A lack of structural diversity in commercial offerings, coupled with the time constraints of wet-lab experiments, render broad electrode screening infeasible without a modeling complement. Herein, an experimentally validated model of a vanadium redox flow cell is used to generate polarization data for electrodes with different macrohomogeneous properties (thickness, porosity, volumetric surface area, and kinetic rate constant). Using these data sets, we then build and train a neural network with minimal average root-mean squared testing error (17.9 ± 1.8 mA cm<sup>−2</sup>) to compute individual parameter sweeps along the cell polarization curve. Finally, we employ a genetic algorithm with the neural network to ascertain electrode property values for improving cell power density. While the developed framework does not supplant experimentation, it is generalizable to different redox chemistries and may inform future electrode design strategies.


2020 ◽  
Vol 259 ◽  
pp. 114198 ◽  
Author(s):  
J. Sun ◽  
H.R. Jiang ◽  
B.W. Zhang ◽  
C.Y.H. Chao ◽  
T.S. Zhao

2020 ◽  
Author(s):  
wenda wu ◽  
Jian Luo ◽  
Fang Wang ◽  
Bing Yuan ◽  
Tianbiao Liu

Aqueous organic redox flow batteries (AORFBs) have become increasing attractive for scalable energy storage. However, it remains challenging to develop high voltage, powerful AORFBs because of the lack of catholytes with high redox potential. Herein, we report methyl viologen dibromide (<b>[MV]Br<sub>2</sub></b>) as a facile self-trapping, bipolar redox electrolyte material for pH neutral redox flow battery applications. The formation of the <b>[MV](Br<sub>3</sub>)<sub>2</sub></b> complex was computationally predicted and experimentally confirmed. The low solubility <b>[MV](Br<sub>3</sub>)<sub>2</sub></b> complex in the catholyte during the battery charge process not only mitigates the crossover of charged tribromide species (Br<sub>3</sub><sup>-</sup>) and addresses the toxicity concern of volatile bromine simultaneously. A 1.53 V bipolar MV/Br AORFB delivered outstanding battery performance at pH neutral conditions, specifically, 100% total capacity retention, 133 mW/cm<sup>2</sup> power density, and 60% energy efficiency at 40 mA/cm<sup>2</sup>.


Carbon ◽  
2013 ◽  
Vol 60 ◽  
pp. 280-288 ◽  
Author(s):  
Cristina Flox ◽  
Javier Rubio-García ◽  
Marcel Skoumal ◽  
Teresa Andreu ◽  
Juan Ramón Morante

Sign in / Sign up

Export Citation Format

Share Document