Elevated Temperature Proton Exchange Membrane Water Electrolysis for Reduced Cost of Green Hydrogen Production

2020 ◽  
Vol MA2020-02 (38) ◽  
pp. 2452-2452
Author(s):  
Steffen Garbe ◽  
Thomas J. Schmidt ◽  
Lorenz Gubler
2021 ◽  
Vol 119 (12) ◽  
pp. 123903
Author(s):  
Xinrong Zhang ◽  
Wei Zhang ◽  
Weijing Yang ◽  
Wen Liu ◽  
Fanqi Min ◽  
...  

2019 ◽  
Vol 3 (1) ◽  
pp. 33 ◽  
Author(s):  
Vittorio Guida ◽  
Damien Guilbert ◽  
Bruno Douine

Recently, the use of electrolyzers for hydrogen production through water electrolysis is of great interest in the industrial field to replace current hydrogen production pathways based on fossil fuels (e.g. oil, coal). The electrolyzers must be supplied with a very low DC voltage in order to produce hydrogen from the deionized water. For this reason, DC-DC step-down converters are generally used. However, these topologies present several drawbacks from output current ripple and voltage gain point of view. In order to meet these expectations, interleaved DC-DC step-down converters are considered as promising and interesting candidates to supply proton exchange membrane (PEM) electrolyzers. Indeed, these converters offer some advantages including output current ripple reduction and reliability in case of power switch failures. In addition, over the last decade, many improvements have been brought to these topologies with the aim to enhance their conversion gain. Hence, the main goal of this paper is to carry out a thorough state-of-the-art of different interleaved step-down DC-DC topologies featuring a high voltage gain, needed for PEM electrolyzer applications.


2021 ◽  
Vol 168 (9) ◽  
pp. 094504
Author(s):  
Marco Bonanno ◽  
Karsten Müller ◽  
Boris Bensmann ◽  
Richard Hanke-Rauschenbach ◽  
Retha Peach ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (43) ◽  
pp. 34100-34108 ◽  
Author(s):  
T. Pandiarajan ◽  
L. John Berchmans ◽  
S. Ravichandran

Alkaline anion exchange membrane water electrolysis (AEMWE) is considered to be an alternative to proton exchange membrane water electrolysis (PEMWE), owing to the use of non-noble meta/metal oxides in AEMWE.


Sign in / Sign up

Export Citation Format

Share Document