electrolysis system
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 67)

H-INDEX

23
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Peng Zhou ◽  
Wenchang Li ◽  
Jianyong Lan ◽  
Tingshun Zhu

Abstract Oxidative carbene organocatalysis, inspired from Vitamin B1 catalyzed oxidative activation from pyruvate to acetyl coenzyme A, have been developed as a versatile synthetic method. To date, the α-, β-, γ-, δ- and carbonyl carbons of (unsaturated)aldehydes have been successfully activated via oxidative N-heterocyclic carbene (NHC) organocatalysis. In comparison with chemical redox or photoredox methods, electroredox methods, although widely used in mechanistic study, were much less studied in NHC catalyzed organic synthesis. Herein, an electroredox NHC organocatalysis system with iodine cocatalyst was developed. With the help of non-uniform distribution of electrolysis system, NHC and iodine, which was normally not compatible in chemical reaction, cooperated well in the electrochemical system. This cocatalyst system provided general solutions for electrochemical single-electron-transfer (SET) oxidation of Breslow intermediate towards versatile transformations. Radical clock experiment and cyclic voltammetry results suggested an anodic radical coupling pathway.


Author(s):  
Mei Zhang ◽  
Zhongyao Duan ◽  
Lin Cui ◽  
Hongjie Yu ◽  
Ziqiang Wang ◽  
...  

Hybrid water electrolysis system composed of anodic urea oxidation reaction (UOR) and cathodic hydrogen evolution reaction (HER) has been regarded as a green and sustainable route to alleviate global energy...


2021 ◽  
Vol 13 (24) ◽  
pp. 13941
Author(s):  
Yuriy Shapovalov ◽  
Rustam Tokpayev ◽  
Tamina Khavaza ◽  
Mikhail Nauryzbayev

Photosynthesis is considered to be one of the promising areas of cheap and environmentally friendly energy. Photosynthesis involves the process of water oxidation with the formation of molecular oxygen and hydrogen as byproducts. The aim of the present article is to review the energy (light) phase of photosynthesis based on the published X-ray studies of photosystems I and II (PS-I and PS-II). Using modern ideas about semiconductors and biological semiconductor structures, the mechanisms of H+, O2↑, e− generation from water are described. At the initial stage, PS II produces hydrogen peroxide from water as a result of the photoenzymatic reaction, which is oxidized in the active center of PS-II on the Mn4CaO5 cluster to form O2↑, H+, e−. Mn4+ is reduced to Mn2+ and then oxidized to Mn4+ with the transfer of reducing the equivalents of PS-I. The electrons formed are transported to PS-I (P 700), where the electrochemical reaction of water decomposition takes place in a two-electrode electrolysis system with the formation of gaseous oxygen and hydrogen. The proposed functioning mechanisms of PS-I and PS-II can be used in the development of environmentally friendly technologies for the production of molecular hydrogen.


2021 ◽  
Vol MA2021-02 (37) ◽  
pp. 1105-1105
Author(s):  
Marco Bonanno ◽  
Karsten Müller ◽  
Boris Bensmann ◽  
Richard Hanke-Rauschenbach ◽  
Retha Peach ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document