Catalyst-coated proton exchange membrane for hydrogen production with high pressure water electrolysis

2021 ◽  
Vol 119 (12) ◽  
pp. 123903
Author(s):  
Xinrong Zhang ◽  
Wei Zhang ◽  
Weijing Yang ◽  
Wen Liu ◽  
Fanqi Min ◽  
...  
2019 ◽  
Vol 3 (1) ◽  
pp. 33 ◽  
Author(s):  
Vittorio Guida ◽  
Damien Guilbert ◽  
Bruno Douine

Recently, the use of electrolyzers for hydrogen production through water electrolysis is of great interest in the industrial field to replace current hydrogen production pathways based on fossil fuels (e.g. oil, coal). The electrolyzers must be supplied with a very low DC voltage in order to produce hydrogen from the deionized water. For this reason, DC-DC step-down converters are generally used. However, these topologies present several drawbacks from output current ripple and voltage gain point of view. In order to meet these expectations, interleaved DC-DC step-down converters are considered as promising and interesting candidates to supply proton exchange membrane (PEM) electrolyzers. Indeed, these converters offer some advantages including output current ripple reduction and reliability in case of power switch failures. In addition, over the last decade, many improvements have been brought to these topologies with the aim to enhance their conversion gain. Hence, the main goal of this paper is to carry out a thorough state-of-the-art of different interleaved step-down DC-DC topologies featuring a high voltage gain, needed for PEM electrolyzer applications.


2015 ◽  
Vol 75 (8) ◽  
Author(s):  
Alhassan Salami Tijani ◽  
A.H. Abdol Rahim ◽  
Mohd Khairulddin Badrol Hisam

The aim of this paper is to analyse loss characteristic of a high-pressure electrolyzer system for hydrogen production. Fundamental thermodynamics and electrochemical relations related to polymer electrolyte membrane (PEM) electrolyzer have been modelled in MATLAB. Simple proton exchange membrane water electrolysis is analysed on the basis of well-known Butler-Volmer kinetic for the electrodes and transport resistance in the polymer-electrolyte. The overpotential at the anode, cathode and overpotential due to ohmic resistance were analysed individually. A sensitivity analysis was carried out to study the effect of exchange current density on Faraday efficiency. At current density of 0.2A/cm2, a higher efficiency of 87.8 % was observed.  


RSC Advances ◽  
2015 ◽  
Vol 5 (43) ◽  
pp. 34100-34108 ◽  
Author(s):  
T. Pandiarajan ◽  
L. John Berchmans ◽  
S. Ravichandran

Alkaline anion exchange membrane water electrolysis (AEMWE) is considered to be an alternative to proton exchange membrane water electrolysis (PEMWE), owing to the use of non-noble meta/metal oxides in AEMWE.


Sign in / Sign up

Export Citation Format

Share Document