scholarly journals The increase in non-cross-bridge forces after stretch of activated striated muscle is related to titin isoforms

2016 ◽  
Vol 310 (1) ◽  
pp. C19-C26 ◽  
Author(s):  
Anabelle S. Cornachione ◽  
Felipe Leite ◽  
Maria Angela Bagni ◽  
Dilson E. Rassier

Skeletal muscles present a non-cross-bridge increase in sarcomere stiffness and tension on Ca2+ activation, referred to as static stiffness and static tension, respectively. It has been hypothesized that this increase in tension is caused by Ca2+-dependent changes in the properties of titin molecules. To verify this hypothesis, we investigated the static tension in muscles containing different titin isoforms. Permeabilized myofibrils were isolated from the psoas, soleus, and heart ventricle from the rabbit, and tested in pCa 9.0 and pCa 4.5, before and after extraction of troponin C, thin filaments, and treatment with the actomyosin inhibitor blebbistatin. The myofibrils were tested with stretches of different amplitudes in sarcomere lengths varying between 1.93 and 3.37 μm for the psoas, 2.68 and 4.21 μm for the soleus, and 1.51 and 2.86 μm for the ventricle. Using gel electrophoresis, we confirmed that the three muscles tested have different titin isoforms. The static tension was present in psoas and soleus myofibrils, but not in ventricle myofibrils, and higher in psoas myofibrils than in soleus myofibrils. These results suggest that the increase in the static tension is directly associated with Ca2+-dependent change in titin properties and not associated with changes in titin-actin interactions.

2020 ◽  
Vol 117 (22) ◽  
pp. 11865-11874 ◽  
Author(s):  
Raúl Padrón ◽  
Weikang Ma ◽  
Sebastian Duno-Miranda ◽  
Natalia Koubassova ◽  
Kyoung Hwan Lee ◽  
...  

Striated muscle contraction involves sliding of actin thin filaments along myosin thick filaments, controlled by calcium through thin filament activation. In relaxed muscle, the two heads of myosin interact with each other on the filament surface to form the interacting-heads motif (IHM). A key question is how both heads are released from the surface to approach actin and produce force. We used time-resolved synchrotron X-ray diffraction to study tarantula muscle before and after tetani. The patterns showed that the IHM is present in live relaxed muscle. Tetanic contraction produced only a very small backbone elongation, implying that mechanosensing—proposed in vertebrate muscle—is not of primary importance in tarantula. Rather, thick filament activation results from increases in myosin phosphorylation that release a fraction of heads to produce force, with the remainder staying in the ordered IHM configuration. After the tetanus, the released heads slowly recover toward the resting, helically ordered state. During this time the released heads remain close to actin and can quickly rebind, enhancing the force produced by posttetanic twitches, structurally explaining posttetanic potentiation. Taken together, these results suggest that, in addition to stretch activation in insects, two other mechanisms for thick filament activation have evolved to disrupt the interactions that establish the relaxed helices of IHMs: one in invertebrates, by either regulatory light-chain phosphorylation (as in arthropods) or Ca2+-binding (in mollusks, lacking phosphorylation), and another in vertebrates, by mechanosensing.


2020 ◽  
Author(s):  
Shiyu Luo ◽  
Qifei Li ◽  
Jasmine Lin ◽  
Quinn Murphy ◽  
Isabelle Marty ◽  
...  

Abstract SPEG, a member of the myosin light chain kinase family, is localized at the level of triad surrounding myofibrils in skeletal muscles. In humans, SPEG mutations are associated with centronuclear myopathy and cardiomyopathy. Using a striated muscle specific Speg-knockout (KO) mouse model, we have previously shown that SPEG is critical for triad maintenance and calcium handling. Here we further examined the molecular function of SPEG and characterized the effects of SPEG deficiency on triad and focal adhesion proteins. We used yeast two-hybrid assay, and identified desmin, an intermediate filament protein, to interact with SPEG and confirmed this interaction by co-immunoprecipitation. Using domain-mapping assay, we defined that Ig-like and fibronectin III domains of SPEG interact with rod domain of desmin. In skeletal muscles, SPEG depletion leads to desmin aggregates in vivo and a shift in desmin equilibrium from soluble to insoluble fraction. We also profiled the expression and localization of triadic proteins in Speg-KO mice using western blot and immunofluorescence. The amounts of RyR1 and triadin were markedly reduced, whereas DHPRα1, SERCA1, and triadin were abnormally accumulated in discrete areas of Speg-KO myofibers. In addition, Speg-KO muscles exhibited internalized vinculin and β1 integrin, both of which are critical components of the focal adhesion complex. Further, β1 integrin was abnormally accumulated in early endosomes of Speg-KO myofibers. These results demonstrate that SPEG-deficient skeletal muscles exhibit several pathological features similar to those seen in MTM1 deficiency. Defects of shared cellular pathways may underlie these structural and functional abnormalities in both types of diseases.


1992 ◽  
Vol 101 (3) ◽  
pp. 503-508
Author(s):  
R. Newman ◽  
G.W. Butcher ◽  
B. Bullard ◽  
K.R. Leonard

Insect flight muscle has a large component (Tn-H) in the tropomyosin-troponin complex that is not present in vertebrate striated muscle thin filaments. Tn-H is shown by gold/Fab labelling to be present at regular intervals in insect flight muscle thin filaments. The Fab fragment of a monoclonal antibody to Tn-H was conjugated directly with colloidal gold and this probe used to label isolated thin filaments from the flight muscle of Lethocerus indicus (water bug). The distribution of gold particles seen in electron microscope images of negatively stained thin filaments was analysed to show that the probe bound to sites having a periodicity of approximately 40 nm, which is the expected value for the tropomyosin-troponin repeat. Conjugates of Fab with colloidal gold particles of 3 nm diameter labelled almost all sites. Conjugates with gold particles of 5 nm and 10 nm diameter labelled less efficiently (70% and 30%, respectively) but analysis of the distribution of inter-particle intervals among a number of filaments again gave the same fundamental spacing of 40 nm. The error in the measurements (standard deviation approximately +/− 4.2 for 5 nm gold/Fab) is less than earlier estimates for the size of the gold/Fab complex. Measurements on gold/Fab in negative stain suggest that the bound Fab contributes a shell about 2 nm in thickness around the gold particle. The radius of the probe (about 4.5 nm for 5 nm gold/Fab) would then be consistent with the value of error found. The size of the probe suggests that the gold particle binds to the side of the Fab molecule, rather close to the antibody combining site. The potential resolution of the technique may thus be better than originally expected.


1998 ◽  
Vol 78 (2) ◽  
pp. 359-391 ◽  
Author(s):  
BARRY M. MILLMAN

Millman, Barry M. The Filament Lattice of Striated Muscle. Physiol. Rev. 78: 359–391, 1998. — The filament lattice of striated muscle is an overlapping hexagonal array of thick and thin filaments within which muscle contraction takes place. Its structure can be studied by electron microscopy or X-ray diffraction. With the latter technique, structural changes can be monitored during contraction and other physiological conditions. The lattice of intact muscle fibers can change size through osmotic swelling or shrinking or by changing the sarcomere length of the muscle. Similarly, muscle fibers that have been chemically or mechanically skinned can be compressed with bathing solutions containing very large inert polymeric molecules. The effects of lattice change on muscle contraction in vertebrate skeletal and cardiac muscle and in invertebrate striated muscle are reviewed. The force developed, the speed of shortening, and stiffness are compared with structural changes occurring within the lattice. Radial forces between the filaments in the lattice, which can include electrostatic, Van der Waals, entropic, structural, and cross bridge, are assessed for their contributions to lattice stability and to the contraction process.


1977 ◽  
Vol 163 (2) ◽  
pp. 291-296 ◽  
Author(s):  
W Lehman

Ca2+ regulation of arthropod actomyosin adenosine triphosphatase is associated with both the thin filaments, as in vertebrates, and with the myosin, as in molluscs. The actomyosin of decapod-crustacean fast muscles was previously considered to be an exception, displaying only a Ca2+-regulatory system linked to the thin filaments and not a myosin-linked regulatory system. In the present study, myosin regulation is demonstrated in a variety of decapod muscles when they are tested under more physiological ionic conditions. Myosin regulation is shown by using mixtures of pure rabbit actin with myofibrils, with actomyosin and with purified myosin, and in each case the adenosine triphosphatase is Ca2+ dependent. Myosin regulation may also occur in vertebrate striated muscle, but seemingly is lost during purification of the myosin.


Sign in / Sign up

Export Citation Format

Share Document