scholarly journals Cross-Bridge-Dependent Change in Ca2+ Sensitivity is Involved in the Negative Inotropic Effect of Nifedipine in Aequorin-Injected Ferret Ventricular Muscles

2006 ◽  
Vol 70 (4) ◽  
pp. 489-494 ◽  
Author(s):  
Tetsuya Ishikawa ◽  
Seibu Mochizuki ◽  
Satoshi Kurihara
Circulation ◽  
1997 ◽  
Vol 96 (8) ◽  
pp. 2501-2504 ◽  
Author(s):  
Yuji Ishibashi ◽  
Yoshitoshi Urabe ◽  
Hiroyuki Tsutsui ◽  
Shintaro Kinugawa ◽  
Masaru Sugimachi ◽  
...  

2002 ◽  
Vol 80 (6) ◽  
pp. 578-587 ◽  
Author(s):  
María de Jesús Gómez ◽  
Guy Rousseau ◽  
Réginald Nadeau ◽  
Roberto Berra ◽  
Gonzalo Flores ◽  
...  

Dopamine receptors include the D1- (D1 and D5 subtypes) and D2-like (D2, D3, and D4 subtypes) families. D1-like receptors are positively and D2-like receptors negatively coupled to the adenylyl cyclase. Dopamine D2-like (D4 subtype) receptors have been identified in human and rat hearts. However the presence of D2 and D3 receptor subtypes is unclear. Furthermore, their role in cardiac functions is unknown. By autoradiographic studies of guinea pig hearts, we identified D3 and D4 receptors, using the selective radioligands [3H]-7-OH-DPAT and [3H]emonapride (YM-09151-2 plus raclopride). Western blot analysis confirmed D3 and D4 receptors in the right and left ventricle of the same species. Selective agonists of D3 and D4 receptors (±)-7-OH-DPAT and PD 168 077 (10–9 to 10–5 M, respectively) induced a significant negative chronotropic and inotropic effect in the isolated guinea pig heart preparation. Negative inotropic effect induced by PD 168 077 was associated with an inhibition in cyclase activity. No changes in cyclase activity were found with (±)-7-OH-DPAT. The aim of this study is to support the presence of D3 and D4 receptors in the heart. Although our results suggest that D3 and D4 receptors are functionally active in the heart, we need additional information with an antagonist and an agonist of improved potency and selectivity to understand the respective roles of D3 and D4 receptors in the cardiac functions.Key words: Dopamine receptors (D2, D3, D4 subtypes), autoradiography, Western blot, cAMP, heart.


1996 ◽  
Vol 270 (2) ◽  
pp. H678-H684
Author(s):  
L. Miao ◽  
Z. Qiu ◽  
J. P. Morgan

We tested the hypothesis that the negative inotropic effect (NIE) of cocaine is mediated, at least in part, by cholinergic stimulation and can be correlated with the degree of adenosine 3',5'-cyclic monophosphate (cAMP) dependency of the inotropic state. Cardiac myocytes were isolated from left ventricles of ferrets and loaded with the fluorescent Ca2+ indicator indo 1. Cells were placed in physiological solution containing 2.0 mM Ca2+ and stimulated at 0.5 Hz and 30 degrees C. Cocaine decreased peak cell shortening and peak intracellular Ca2+ in a concentration-dependent manner (10(-8)-10(-4) M). The concentration-response curve of cocaine was shifted significantly downward compared with those of lidocaine and procaine in the same range of concentrations. Atropine (10(-6) M) shifted the concentration-response curve of cocaine, but not those of lidocaine and procaine, rightward, with a pA2 value (7.66) similar to that obtained with carbachol (7.99). With prior addition of isoproterenol (ISO, 10(-8) M) or increased Ca2+ (4.0 mM) to increase cell shortening to the same degree (approximately 60%), cocaine and carbachol decreased contractility to a significantly greater extent in ISO-stimulated myocytes. To clarify whether these treatments changed responsiveness of the contractile elements to Ca2+, the effect of 2,3-butanedione monoxime, an agent that interferes with the interaction of myosin and actin, was tested with previous addition of ISO or increased Ca2+, and no differential effect occurred. Therefore, we postulate that 1) the NIE of cocaine on myocytes is caused by decreased Ca2+ availability; 2) this effect is due to specific stimulation of cholinergic receptors in addition to other direct myocardial (probably local anesthetic) effects; and 3) the NIE correlates with the level of cAMP dependence of the inotropic state.


2021 ◽  
Vol 320 (4) ◽  
pp. H1646-H1656
Author(s):  
David Coquerel ◽  
Eugénie Delile ◽  
Lauralyne Dumont ◽  
Frédéric Chagnon ◽  
Alexandre Murza ◽  
...  

By using more potent Gαi-biased APJ agonists that strongly inhibit cAMP production, these data point to the negative inotropic effect of APJ-mediated Gαi signaling in the heart and highlight the potential protective impact of APJ-dependent Gαi signaling in cardiovascular diseases associated with left ventricular hypertrophy.


1987 ◽  
Vol 65 (9) ◽  
pp. 1832-1839 ◽  
Author(s):  
E. Honoré ◽  
M. M. Adamantidis ◽  
B. A. Dupuis ◽  
C. E. Challice ◽  
P. Guilbault

Biphasic contractions were obtained in guinea-pig papillary muscle by inducing partial depolarization in K+-rich solution (17 mM) in the presence of 0.3 μM isoproterenol. Mn2+ ions inhibited the two components of contraction in a similar way. Nifedipine and particularly Cd2+ ions specifically inhibited the second component of contraction. Isoproterenol and BAY K 8644 markedly increased the amplitude of the second component (P2) of contraction. Nevertheless, a moderate positive inotropic effect of isoproterenol was found on the first component (P1) of contraction when excitability was restored by 0.2 mM Ba instead of isoproterenol. Acetylcholine and hypoxia decreased the amplitude of the second component of contraction to a greater extent. In the presence of digoxin or Na+-free solution, P1was strongly increased. When sarcoplasmic reticular function was hindered by 1 mM caffeine or in the presence of Ca2+-free Sr2+ solution, digoxin always induced a negative inotropic effect on P2. Inversely in these conditions the transient positive inotropic effect of Na+-free solution was strongly reduced. These results are consistent with the hypothesis that the late component of contraction is triggered by the slow inward Ca2+ current and that the early component is due to Ca2+ release from the sarcoplasmic reticulum.


Sign in / Sign up

Export Citation Format

Share Document