The Filament Lattice of Striated Muscle

1998 ◽  
Vol 78 (2) ◽  
pp. 359-391 ◽  
Author(s):  
BARRY M. MILLMAN

Millman, Barry M. The Filament Lattice of Striated Muscle. Physiol. Rev. 78: 359–391, 1998. — The filament lattice of striated muscle is an overlapping hexagonal array of thick and thin filaments within which muscle contraction takes place. Its structure can be studied by electron microscopy or X-ray diffraction. With the latter technique, structural changes can be monitored during contraction and other physiological conditions. The lattice of intact muscle fibers can change size through osmotic swelling or shrinking or by changing the sarcomere length of the muscle. Similarly, muscle fibers that have been chemically or mechanically skinned can be compressed with bathing solutions containing very large inert polymeric molecules. The effects of lattice change on muscle contraction in vertebrate skeletal and cardiac muscle and in invertebrate striated muscle are reviewed. The force developed, the speed of shortening, and stiffness are compared with structural changes occurring within the lattice. Radial forces between the filaments in the lattice, which can include electrostatic, Van der Waals, entropic, structural, and cross bridge, are assessed for their contributions to lattice stability and to the contraction process.

2020 ◽  
Vol 117 (22) ◽  
pp. 11865-11874 ◽  
Author(s):  
Raúl Padrón ◽  
Weikang Ma ◽  
Sebastian Duno-Miranda ◽  
Natalia Koubassova ◽  
Kyoung Hwan Lee ◽  
...  

Striated muscle contraction involves sliding of actin thin filaments along myosin thick filaments, controlled by calcium through thin filament activation. In relaxed muscle, the two heads of myosin interact with each other on the filament surface to form the interacting-heads motif (IHM). A key question is how both heads are released from the surface to approach actin and produce force. We used time-resolved synchrotron X-ray diffraction to study tarantula muscle before and after tetani. The patterns showed that the IHM is present in live relaxed muscle. Tetanic contraction produced only a very small backbone elongation, implying that mechanosensing—proposed in vertebrate muscle—is not of primary importance in tarantula. Rather, thick filament activation results from increases in myosin phosphorylation that release a fraction of heads to produce force, with the remainder staying in the ordered IHM configuration. After the tetanus, the released heads slowly recover toward the resting, helically ordered state. During this time the released heads remain close to actin and can quickly rebind, enhancing the force produced by posttetanic twitches, structurally explaining posttetanic potentiation. Taken together, these results suggest that, in addition to stretch activation in insects, two other mechanisms for thick filament activation have evolved to disrupt the interactions that establish the relaxed helices of IHMs: one in invertebrates, by either regulatory light-chain phosphorylation (as in arthropods) or Ca2+-binding (in mollusks, lacking phosphorylation), and another in vertebrates, by mechanosensing.


2000 ◽  
Vol 6 (S2) ◽  
pp. 76-77
Author(s):  
Rhea J.C. Levine ◽  
Irina Kulakovskaya ◽  
H. Lee Sweeney ◽  
Saul Winegrad ◽  
Zhaohui Yang

In mammalian skeletal and cardiac muscles, regulation of activity occurs when calcium binds to troponin on thin filaments, which ultimately results in exposure of myosin-binding sites on actin. However, modulation of contractile function, affecting such parameters as calcium sensitivity, the rate of rise of tension, the expression of maximum tension and/or the rate of onset of relaxation, is also calcium dependent. It is, in part, a property of the thick filament itself and its component myosin and/or accessory proteins. Among these are phosphorylation of myosin regulatory light chains or light chain 2 (RLCs; LC2) and in cardiac, but not skeletal fibers, phosphorylation of myosin-binding protein C (MyBP-C).Gentle methods of separating thick filaments from small tissue specimens, subjected to various experimental protocols designed to explore the functional parameters of such modulatory activities, allow examination of any accompanying structural changes.


2015 ◽  
Vol 2015 ◽  
pp. 1-28 ◽  
Author(s):  
Alf Månsson ◽  
Dilson Rassier ◽  
Georgios Tsiavaliaris

Muscle contraction results from cyclic interactions between the contractile proteins myosin and actin, driven by the turnover of adenosine triphosphate (ATP). Despite intense studies, several molecular events in the contraction process are poorly understood, including the relationship between force-generation and phosphate-release in the ATP-turnover. Different aspects of the force-generating transition are reflected in the changes in tension development by muscle cells, myofibrils and single molecules upon changes in temperature, altered phosphate concentration, or length perturbations. It has been notoriously difficult to explain all these events within a given theoretical framework and to unequivocally correlate observed events with the atomic structures of the myosin motor. Other incompletely understood issues include the role of the two heads of myosin II and structural changes in the actin filaments as well as the importance of the three-dimensional order. We here review these issues in relation to controversies regarding basic physiological properties of striated muscle. We also briefly consider actomyosin mutation effects in cardiac and skeletal muscle function and the possibility to treat these defects by drugs.


1972 ◽  
Vol 59 (1) ◽  
pp. 103-120 ◽  
Author(s):  
C. G. dos Remedios ◽  
R. G. C. Millikan ◽  
M. F. Morales

Instrumentation has been developed to detect rapidly the polarization of tryptophan fluorescence from single muscle fibers in rigor, relaxation, and contraction. The polarization parameter (P⊥) obtained by exiciting the muscle tryptophans with light polarized perpendicular to the long axis of the muscle fiber had a magnitude P⊥ (relaxation) > P⊥ (contraction) > P⊥ (rigor) for the three types of muscle fibers examined (glycerinated rabbit psoas, glycerinated dorsal longitudinal flight muscle of Lethocerus americanus, and live semitendinosus of Rana pipiens). P⊥ from single psoas fibers in rigor was found to increase as the sarcomere length increased but in relaxed fibers P⊥ was independent of sarcomere length. After rigor, pyrophosphate produced little or no change in P⊥, but following an adenosine triphosphate (ATP)-containing solution, pyrophosphate produced a value of P⊥ that fell between the contraction and relaxation values. Sinusoidal or square wave oscillations of the muscle of amplitude 0.5–2.0% of the sarcomere length and frequency 1, 2, or 5 Hz were applied in rigor when the myosin cross-bridges are considered to be firmly attached to the thin filaments. No significant changes in P⊥ were observed in either rigor or relaxation. The preceding results together with our present knowledge of tryptophan distribution in the contractile proteins has led us to the conclusion that the parameter P⊥ is a probe of the contractile state of myosin which is probably sensitive to the orientation of the myosin S1 subfragment.


2009 ◽  
Vol 33 (4) ◽  
pp. 297-301 ◽  
Author(s):  
Karnyupha Jittivadhna ◽  
Pintip Ruenwongsa ◽  
Bhinyo Panijpan

From our teaching of the contractile unit of the striated muscle, we have found limitations in using textbook illustrations of sarcomere structure and its related dynamic molecular physiological details. A hand-held model of a striated muscle sarcomere made from common items has thus been made by us to enhance students' understanding of the sliding filament mechanism as well as their appreciation of the spatial arrangements of the thick and thin filaments. The model proves to be quite efficacious in dispelling some alternative conceptions held by students exposed previously only to two-dimensional textbook illustrations and computer graphic displays. More importantly, after being taught by this hand-held device, electronmicrographic features of the A and I bands, H zone, and Z disk can be easily correlated by the students to the positions of the thick and thin elements relatively sliding past one another. The transverse expansion of the sarcomere and the constancy of its volume upon contraction are also demonstrable by the model.


2021 ◽  
Vol 153 (3) ◽  
Author(s):  
Weikang Ma ◽  
Sebastian Duno-Miranda ◽  
Thomas Irving ◽  
Roger Craig ◽  
Raúl Padrón

Myosin molecules in the relaxed thick filaments of striated muscle have a helical arrangement in which the heads of each molecule interact with each other, forming the interacting-heads motif (IHM). In relaxed mammalian skeletal muscle, this helical ordering occurs only at temperatures >20°C and is disrupted when temperature is decreased. Recent x-ray diffraction studies of live tarantula skeletal muscle have suggested that the two myosin heads of the IHM (blocked heads [BHs] and free heads [FHs]) have very different roles and dynamics during contraction. Here, we explore temperature-induced changes in the BHs and FHs in relaxed tarantula skeletal muscle. We find a change with decreasing temperature that is similar to that in mammals, while increasing temperature induces a different behavior in the heads. At 22.5°C, the BHs and FHs containing ADP.Pi are fully helically organized, but they become progressively disordered as temperature is lowered or raised. Our interpretation suggests that at low temperature, while the BHs remain ordered the FHs become disordered due to transition of the heads to a straight conformation containing Mg.ATP. Above 27.5°C, the nucleotide remains as ADP.Pi, but while BHs remain ordered, half of the FHs become progressively disordered, released semipermanently at a midway distance to the thin filaments while the remaining FHs are docked as swaying heads. We propose a thermosensing mechanism for tarantula skeletal muscle to explain these changes. Our results suggest that tarantula skeletal muscle thick filaments, in addition to having a superrelaxation–based ATP energy-saving mechanism in the range of 8.5–40°C, also exhibit energy saving at lower temperatures (<22.5°C), similar to the proposed refractory state in mammals.


2020 ◽  
Vol 21 (4) ◽  
pp. 1244
Author(s):  
Haruo Sugi ◽  
Maki Yamaguchi ◽  
Tetsuo Ohno ◽  
Hiroshi Okuyama ◽  
Naoto Yagi

It is generally believed that during muscle contraction, myosin heads (M) extending from myosin filament attaches to actin filaments (A) to perform power stroke, associated with the reaction, A-M-ADP-Pi → A-M + ADP + Pi, so that myosin heads pass through the state of A-M, i.e., rigor A-M complex. We have, however, recently found that: (1) an antibody to myosin head, completely covering actin-binding sites in myosin head, has no effect on Ca2+-activated tension in skinned muscle fibers; (2) skinned fibers exhibit distinct tension recovery following ramp-shaped releases (amplitude, 0.5% of Lo; complete in 5 ms); and (3) EDTA, chelating Mg ions, eliminate the tension recovery in low-Ca rigor fibers but not in high-Ca rigor fibers. These results suggest that A-M-ADP myosin heads in high-Ca rigor fibers have dynamic properties to produce the tension recovery following ramp-shaped releases, and that myosin heads do not pass through rigor A-M complex configuration during muscle contraction. To obtain information about the structural changes in A-M-ADP myosin heads during the tension recovery, we performed X-ray diffraction studies on high-Ca rigor skinned fibers subjected to ramp-shaped releases. X-ray diffraction patterns of the fibers were recorded before and after application of ramp-shaped releases. The results obtained indicate that during the initial drop in rigor tension coincident with the applied release, rigor myosin heads take up applied displacement by tilting from oblique to perpendicular configuration to myofilaments, and after the release myosin heads appear to rotate around the helical structure of actin filaments to produce the tension recovery.


Author(s):  
J.R. Sommer ◽  
R. Nassar ◽  
N.R. Wallace

It is known that the P faces of freeze-fractured SR of fixed and cryoprotected striated muscle fibers are studded with particles, whereas the E faces remain smooth, except for two staggered rows of pits in the junctional SR (JSR) which face transverse tubules (junctional pits). Freeze-fracture after quick-freezing of native skeletal muscle provides similar images (1). We have used freeze-etching to look at the SR's structure in single intact skeletal muscle fibers (r.temporaria) without stimulation, following varied post-stimulation intervals, and in tetanus. Single intact skeletal muscle fibers were isolated and quick-frozen as previously reported (2). After quick-freezing, the fibers were transferred to a Balzers 301 device and etched for 3 minutes at -100°C, followed by unidirectional Pt evaporation with an electron gun and carbon coating.


1989 ◽  
Vol 22 (1) ◽  
pp. 72-74 ◽  
Author(s):  
Y. Tajima ◽  
K. Okada ◽  
O. Yoshida ◽  
T. Seto ◽  
Y. Amemiya

Small-angle X-ray diffraction patterns from the anterior byssus retractor muscles of Mytilus edulis contracting tonically in response to stimulation with acetylcholine were recorded in a 30 s exposure with synchrotron radiation and a high-sensitivity X-ray area detector called an imaging plate. The 190 Å layer line from the thin filaments increased in intensity with increase in tonic tension up to 6 x 104 kg m−2. Above this value, the layer-line intensity remained almost constant and comparable to that for a contracting skeletal muscle, indicating that the same structural changes of the thin filaments occur in both muscles.


Sign in / Sign up

Export Citation Format

Share Document