focal adhesion proteins
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 15)

H-INDEX

35
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Ukrae H. Cho ◽  
Martin W. Hetzer

Introductory ParagraphDuring programmed cell death, caspases degrade 7 out of ∼30 nucleoporins (Nups) to irreversibly demolish the nuclear pore complex (NPC)1. However, for poorly understood reasons, caspases are also activated in differentiating cells in a non-apoptotic manner2,3. Here, we describe reversible, caspase-mediated NPC “trimming” during early myogenesis. We find that sublethal levels of caspases selectively proteolyze 4 peripheral Nups, Nup358, Nup214, Nup153, and Tpr, resulting in the transient block of nuclear export pathways. Several nuclear export signal (NES)-containing focal adhesion proteins concomitantly accumulate in the nucleus where they function as transcription cofactors4. We show that one such protein, FAK (focal adhesion kinase), drives a global reconfiguration of MBD2 (methyl CpG binding domain protein 2)-mediated genome regulation. We also observe caspase-mediated NPC trimming during neurogenesis and endoplasmic reticulum (ER) stress. Our results illustrate that the NPC can be proteolytically regulated in response to non-apoptotic cues, and call for a reassessment of the death-centric view of caspases.


2021 ◽  
Author(s):  
Lisa E.L. Romano ◽  
Wen Yih Aw ◽  
Kathryn M. Hixson ◽  
Tatiana V. Novoselova ◽  
Tammy M. Havener ◽  
...  

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by mutations in SACS, which manifest as a childhood-onset cerebellar ataxia. Cellular ARSACS phenotypes include mitochondrial dysfunction, intermediate filament (IF) disorganization, and loss of Purkinje neurons. It is unclear how the loss of SACS causes these deficits, or why they manifest as cerebellar ataxia. We employed a multi-omics approach to characterize molecular and cellular deficiencies in SACS knockout (KO) cells. We identified alterations in microtubule structure and dynamics, protein trafficking, and mislocalization of synaptic and focal adhesion proteins. Targeting PTEN, a negative regulator of focal adhesions, rescued several cellular phenotypes in SACS KO cells. We found sacsin interacts with proteins implicated in vesicle transport, including HSP proteins, and interactions between structural and cell adhesion proteins were diminished in SACS KO cells. In all, this study suggests that trafficking and localization of synaptic adhesion proteins is a causal molecular deficiency in ARSACS.


2021 ◽  
Vol 134 (4) ◽  
pp. jcs254029
Author(s):  
Yi-Chun Liao ◽  
Su Hao Lo

ABSTRACTTensins are a family of focal adhesion proteins consisting of four members in mammals (TNS1, TNS2, TNS3 and TNS4). Their multiple domains and activities contribute to the molecular linkage between the extracellular matrix and cytoskeletal networks, as well as mediating signal transduction pathways, leading to a variety of physiological processes, including cell proliferation, attachment, migration and mechanical sensing in a cell. Tensins are required for maintaining normal tissue structures and functions, especially in the kidney and heart, as well as in muscle regeneration, in animals. This Review discusses our current understanding of the domain functions and biological roles of tensins in cells and mice, as well as highlighting their relevance to human diseases.


2021 ◽  
Vol 134 (6) ◽  
pp. jcs254359 ◽  
Author(s):  
Zofia Ostrowska-Podhorodecka ◽  
Isabel Ding ◽  
Wilson Lee ◽  
Jelena Tanic ◽  
Sevil Abbasi ◽  
...  

ABSTRACTVimentin is a structural protein that is required for mesenchymal cell migration and directly interacts with actin, β1 integrin and paxillin. We examined how these interactions enable vimentin to regulate cell migration on collagen. In fibroblasts, depletion of vimentin increased talin-dependent activation of β1 integrin by more than 2-fold. Loss of vimentin was associated with reduction of β1 integrin clustering by 50% and inhibition of paxillin recruitment to focal adhesions by more than 60%, which was restored by vimentin expression. This reduction of paxillin was associated with 65% lower Cdc42 activation, a 60% reduction of cell extension formation and a greater than 35% decrease in cell migration on collagen. The activation of PAK1, a downstream effector of Cdc42, was required for vimentin phosphorylation and filament maturation. We propose that vimentin tunes cell migration through collagen by acting as an adaptor protein for focal adhesion proteins, thereby regulating β1 integrin activation, resulting in well-organized, mature integrin clusters.This article has an associated First Person interview with the first author of the paper.


2020 ◽  
Author(s):  
Shiyu Luo ◽  
Qifei Li ◽  
Jasmine Lin ◽  
Quinn Murphy ◽  
Isabelle Marty ◽  
...  

Abstract SPEG, a member of the myosin light chain kinase family, is localized at the level of triad surrounding myofibrils in skeletal muscles. In humans, SPEG mutations are associated with centronuclear myopathy and cardiomyopathy. Using a striated muscle specific Speg-knockout (KO) mouse model, we have previously shown that SPEG is critical for triad maintenance and calcium handling. Here we further examined the molecular function of SPEG and characterized the effects of SPEG deficiency on triad and focal adhesion proteins. We used yeast two-hybrid assay, and identified desmin, an intermediate filament protein, to interact with SPEG and confirmed this interaction by co-immunoprecipitation. Using domain-mapping assay, we defined that Ig-like and fibronectin III domains of SPEG interact with rod domain of desmin. In skeletal muscles, SPEG depletion leads to desmin aggregates in vivo and a shift in desmin equilibrium from soluble to insoluble fraction. We also profiled the expression and localization of triadic proteins in Speg-KO mice using western blot and immunofluorescence. The amounts of RyR1 and triadin were markedly reduced, whereas DHPRα1, SERCA1, and triadin were abnormally accumulated in discrete areas of Speg-KO myofibers. In addition, Speg-KO muscles exhibited internalized vinculin and β1 integrin, both of which are critical components of the focal adhesion complex. Further, β1 integrin was abnormally accumulated in early endosomes of Speg-KO myofibers. These results demonstrate that SPEG-deficient skeletal muscles exhibit several pathological features similar to those seen in MTM1 deficiency. Defects of shared cellular pathways may underlie these structural and functional abnormalities in both types of diseases.


Author(s):  
Wenjun Gao ◽  
Yedan Liu ◽  
Letao Fan ◽  
Baoying Zheng ◽  
Joshua R. Jefferson ◽  
...  

We recently reported that the enhanced susceptibility to chronic kidney disease (CKD) in the FHH rat is caused, at least in part, by a mutation in γ-adducin (ADD3) that attenuates renal vascular function. The present study explored whether Add3 contributes to the modulation of podocyte structure and function using FHH and FHH.Add3 transgenic rats. The expression of ADD3 on the membrane of primary podocytes isolated from FHH was reduced compared with FHH.Add3 transgenic rats. We found that F-actin nets, which are typically localized in the lamellipodia, replaced unbranched stress fibers in conditionally immortalized mouse podocytes transfected with Add3 DsiRNA and primary podocytes isolated from FHH rats. There were increased F/G-actin ratio and expression of the Arp2/3 complexes throughout FHH podocytes in association with reduced synaptopodin and RhoA but enhanced Rac1 and CDC42 expression in the renal cortex, glomeruli and podocytes of FHH rats. The expression of Nephrin at the slit diaphragm and the levels of focal adhesion proteins ITGA3 and ITGB1 were decreased in the glomeruli of FHH rats. Cell migration was enhanced and adhesion was reduced in podocytes of FHH rats, as well as in immortalized mouse podocyte transfected with Add3 DsiRNA. Mean arterial pressures were similar in FHH and FHH.Add3 transgenic rats at 16-week of age; however, FHH rats exhibited enhanced proteinuria associated with podocyte foot process effacement. These results demonstrate that reduced ADD3 function in FHH rats alters baseline podocyte pathophysiology by rearrangement of the actin cytoskeleton at the onset of proteinuria in young animals.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Kuldeep Singh ◽  
Anne B Kim ◽  
Kathleen G Morgan

Non-muscle myosin II plays a role in many fundamental cellular processes including cell adhesion, migration, and cytokinesis. However, its role in vascular function is not well understood. Here, we investigated the function of non-muscle myosin II in the biomechanical properties of mouse proximal aorta. We found that blebbistatin, a specific inhibitor of non-muscle myosin II decreases agonist-induced aortic stress and stiffness in a dose-dependent manner. We also specifically demonstrate, in freshly isolated contractile aortic smooth muscle cells, using deconvolution microscopy that the NM myosin IIA isoform co-localizes with contractile filaments in the core of the cell as well as in the non-muscle cell cortex. However, the NM myosin IIB isoform is only colocalized with contractile filaments, and is excluded from the cell cortex. Furthermore, both the siRNA knockdown of NMIIA and NMIIB isoforms in a differentiated smooth muscle cell line A7r5 and blebbistatin-mediated inhibition of NM myosin II suppresses agonist-activated increases in phosphorylation of FAK Y925 and paxillin Y118. Thus, in the present study, we show, for the first time, that NM myosin II regulates aortic stiffness and that this regulation is mediated at least in part through the tension-dependent phosphorylation of focal adhesion proteins FAK and paxillin.


2020 ◽  
Vol 117 (16) ◽  
pp. 9064-9073
Author(s):  
David de Semir ◽  
Vladimir Bezrookove ◽  
Mehdi Nosrati ◽  
Kara R. Scanlon ◽  
Eric Singer ◽  
...  

The invasive behavior of glioblastoma is essential to its aggressive potential. Here, we show that pleckstrin homology domain interacting protein (PHIP), acting through effects on the force transduction layer of the focal adhesion complex, drives glioblastoma motility and invasion. Immunofluorescence analysis localized PHIP to the leading edge of glioblastoma cells, together with several focal adhesion proteins: vinculin (VCL), talin 1 (TLN1), integrin beta 1 (ITGB1), as well as phosphorylated forms of paxillin (pPXN) and focal adhesion kinase (pFAK). Confocal microscopy specifically localized PHIP to the force transduction layer, together with TLN1 and VCL. Immunoprecipitation revealed a physical interaction between PHIP and VCL. Targeted suppression of PHIP resulted in significant down-regulation of these focal adhesion proteins, along with zyxin (ZYX), and produced profoundly disorganized stress fibers. Live-cell imaging of glioblastoma cells overexpressing a ZYX-GFP construct demonstrated a role for PHIP in regulating focal adhesion dynamics. PHIP silencing significantly suppressed the migratory and invasive capacity of glioblastoma cells, partially restored following TLN1 or ZYX cDNA overexpression. PHIP knockdown produced substantial suppression of tumor growth upon intracranial implantation, as well as significantly reduced microvessel density and secreted VEGF levels. PHIP copy number was elevated in the classical glioblastoma subtype and correlated with elevated EGFR levels. These results demonstrate PHIP’s role in regulating the actin cytoskeleton, focal adhesion dynamics, and tumor cell motility, and identify PHIP as a key driver of glioblastoma migration and invasion.


Sign in / Sign up

Export Citation Format

Share Document