Acidification stimulates chloride and fluid absorption across frog retinal pigment epithelium

1994 ◽  
Vol 266 (4) ◽  
pp. C946-C956 ◽  
Author(s):  
J. L. Edelman ◽  
H. Lin ◽  
S. S. Miller

Radioactive tracers and a modified capacitance-probe technique were used to characterize the mechanisms that mediate Cl and fluid absorption across the bullfrog retinal pigment epithelium (RPE)-choroid. In control (HCO3/CO2) Ringer solution, 36Cl was actively absorbed (retina to choroid) at a mean rate of 0.34 mu eq.cm-2.h-1 (n = 34) and accounted for approximately 25% of the short-circuit current. Apical bumetanide (100 microM) or basal 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS; 1 mM) inhibited active Cl transport by 70 and 62%, respectively. Active Cl absorption was doubled, either by removing HCO3 from the bathing media or by elevating CO2 from 5 to 13%, and the increased flux was inhibited by apical bumetanide or basal DIDS. Open-circuit measurements of fluid absorption rate (Jv) and the net fluxes of 36Cl, 22Na, and 86Rb (K substitute) indicated that CO2-induced acidification stimulated NaCl and fluid absorption across the RPE. During acidification, bumetanide produced a twofold larger inhibition of Jv compared with control. Stimulation of net Cl absorption was most likely caused by inhibition of the the basolateral membrane intracellular pH-dependent Cl-HCO3 exchanger.

1994 ◽  
Vol 266 (4) ◽  
pp. C957-C966 ◽  
Author(s):  
J. L. Edelman ◽  
H. Lin ◽  
S. S. Miller

In the intact eye, a transition from light to dark increases K concentration ([K]o) from approximately 2 to 5 mM in the extracellular (subretinal) space between the photoreceptors and the retinal pigment epithelium (RPE) apical membrane. In control (HCO3/CO2) Ringer solution, 36Cl was actively absorbed across isolated bullfrog RPE (retina to choroid) at a rate of 0.31 +/- 0.02 (SE) mu eq.cm-2.h-1 (n = 15). Elevating apical [K]o from 2 to 5 mM reversed active 36Cl transport to secretion (choroid to retina), with a rate of 0.76 +/- 0.17 mu eq.cm-2.h-1. This reversal was completely inhibited by 1 mM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) in either the apical or basal bath. In open circuit, elevating [K]o induced a similar reversal of net 36Cl flux and inhibited fluid absorption by approximately 25%. Apical Ba2+ (1 mM), decreased CO2 (5 to 1%), or increased apical bath HCO3 concentration ([HCO3]o) also caused a DIDS-inhibitable reversal of active 36Cl flux. A 10-fold reduction of apical bath Na or [HCO3]o significantly inhibited [K]o, Ba2+, and low CO2-induced Cl secretion. All of these results can be understood in terms of an intracellular pH-dependent stimulation of the basolateral membrane Cl-HCO3 exchanger.


1994 ◽  
Vol 267 (6) ◽  
pp. C1561-C1573 ◽  
Author(s):  
E. Kenyon ◽  
K. Yu ◽  
M. La Cour ◽  
S. S. Miller

The isolated bovine retinal pigment epithelium actively transports lactate from the apical to the basal bath. Net short-circuit [14C]lactate flux in 20 mM lactate was 0.46 +/- 0.09 mu eq.cm-2.h-1 (n = 8). In open circuit, with a physiological lactate gradient, net [14C]lactate flux was 0.66-1.31 mu eq.cm-2.h-1 (n = 3). Lactate in the apical bath caused intracellular acidifications that were saturable, apparently stereospecific, and reduced in magnitude by several H-lactate cotransport inhibitors. In the basal bath, lactate caused intracellular alkalinizations that were dependent on the presence of Na. In short circuit, 20 mM lactate in both baths reversed the direction of net transepithelial 22Na transport from secretion to absorption, suggesting the presence of basolateral Na-lactate cotransport moving lactate out of the cells. Outwardly directed Na-lactate cotransport requires a lactate:Na stoichiometry > 1.4:1, consistent with the coupled movement of Na, lactate, and net negative charge across the basolateral membrane. Intracellular microelectrode recordings showed that basal lactate hyperpolarized and apical lactate depolarized the basolateral membrane. For lactate absorption, this is a novel arrangement of membrane proteins:luminal H-lactate cotransport and serosal electrogenic Na:(n)lactate cotransport. Lactate transport across the retinal pigment epithelium may play an important role in regulating retinal metabolism and subretinal space volume and composition.


1994 ◽  
Vol 266 (4) ◽  
pp. C935-C945 ◽  
Author(s):  
H. Lin ◽  
S. S. Miller

Intracellular pH (pHi) measurements in frog retinal pigment epithelium using the pH-sensitive dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein demonstrate that the basolateral membrane contains a pHi-sensitive Cl-HCO3 exchanger. In control Ringer solution, the removal of Cl from the basal bath alkalinized the cells by 0.07 +/- 0.03 (SD) pH units (n = 39) with an initial rate of 0.022 +/- 0.0013 pH units/min. This effect was blocked by 0.5 mM basal 4,4'-diisothiocyanostilbene-2,2'- disulfonic acid or the removal of HCO3 from both the apical and basal baths. The rate of the exchange is reduced by acidification and increased by alkalinization. Increasing apical bath K concentration ([K]o) from 2 to 5 mM approximates the [K]o change in the subretinal space of the intact eye following a transition from light to dark. This [K]o change alkalinized the cells by increasing the rate of the apical membrane Na-HCO3 cotransporter. In 5 mM apical [K]o, the initial rate of the 0 Cl-induced alkalinization was significantly increased to 304 +/- 13% (n = 4) of control (2 mM [K]o). These mechanisms regulate pHi and could also buffer changes in subretinal pH.


1997 ◽  
Vol 273 (2) ◽  
pp. C456-C472 ◽  
Author(s):  
E. Kenyon ◽  
A. Maminishkis ◽  
D. P. Joseph ◽  
S. S. Miller

pH regulation was studied in fresh explant bovine retinal pigment epithelium-choroid using the pH-sensitive dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein and intracellular microelectrodes. Acid recovery was HCO3 dependent, inhibited by apical amiloride and apical or basal 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), and required apical and basal Na. Alkali recovery was HCO3 dependent and inhibitable by apical or basal DIDS. Three apical and two basolateral transporters were identified. Four contribute to acid extrusion, i.e., apical Na/H exchange, apical H-lactate cotransport, and apical Na-HCO3 cotransport and basolateral Na-HCO3 cotransport. At least two contribute to alkali extrusion, i.e., apical Na-HCO3 cotransport and a basolateral HCO3-dependent, DIDS-inhibitable mechanism, possibly Na-HCO3 cotransport, Cl/HCO3 exchange, or both. The apical Na-HCO3 cotransporter is electrogenic, carrying net negative charge inward. Basal Cl removal or addition of basal HCO3 caused HCO3- and Cl-dependent alkalinizations, respectively. Apical DIDS increased both responses. These cytosolic pH (pHi) regulatory mechanisms are so tightly coupled that changes in pHi can only occur after two or more of them are inhibited. In addition, these mechanisms help provide pathways for transport of Na and HCO3 across the retinal pigment epithelium between the blood and the distal retina.


1986 ◽  
Vol 250 (5) ◽  
pp. F781-F784 ◽  
Author(s):  
S. Tsuboi ◽  
R. Manabe ◽  
S. Iizuka

Transport of Na and Cl across the isolated dog retinal pigment epithelium (RPE) choroid was investigated. Under the short-circuit condition, a net Na flux was observed from choroid to retina and a net Cl flux was determined in the opposite direction. The current created by the net flux of these two ions was larger than the short-circuit current (SCC). Addition of 10(-5) M ouabain to the apical side inhibited net fluxes of both Na and Cl, whereas it reduced the SCC 84%. Addition of 10(-4) M furosemide to the apical side inhibited net Cl flux but had no effect on the net Na transport. The 10(-4) M furosemide reduced the SCC 38%. These drugs had no effect when applied to the basal side. Thus the transport of both Na and Cl depends on the Na-K-ATPase in the apical membrane of the dog RPE. A furosemide-sensitive neutral carrier at the apical membrane is suggested for the transport of Cl. Replacement of HCO3 with SO4 in the bathing solution caused an increase in the SCC, indicating the choroid-to-retina movement of HCO3 across the short-circuited dog RPE choroid.


1966 ◽  
Vol 49 (5) ◽  
pp. 913-924 ◽  
Author(s):  
Arnaldo Lasansky ◽  
Felisa W. de Fisch

A flux chamber was utilized for in vitro studies of a membrane formed by the retinal pigment epithelium and choroid of the eye of the toad (Bufo arenarum and Bufo marinus). A transmembrane potential of 20 to 30 mv was found, the pigment epithelium surface positive with respect to the choroidal surface. Unidirectional fluxes of chloride, sodium, potassium, and calcium were determined in the absence of an electrochemical potential difference. A net transfer of chloride from pigment epithelium to choroid accounted for a major fraction of the mean short-circuit current. A small net flux of sodium from choroid to pigment epithelium was detected in Bufo marinus. In both species of toads, however, about one-third of the mean short-circuit current remained unaccounted for. Manometric determinations of bicarbonate suggested an uptake of this ion at the epithelial surface of the membrane but did not provide evidence of a relationship between this process and the short-circuit current.


1989 ◽  
Vol 257 (1) ◽  
pp. C45-C51 ◽  
Author(s):  
S. M. O'Grady ◽  
P. J. Wolters

Porcine gallbladder, stripped of serosal muscle, mounted in Ussing chambers, and bathed in plasma-like Ringer solution generates a serosal positive transepithelial potential of 4-7 mV and a short-circuit current (Isc) of 50-120 microA/cm2. Substitution of Cl with gluconate or HCO3 with N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) results in a 50% decrease in Isc. Treatment with 1 mM amiloride (mucosal side) or 0.1 mM acetazolamide (both sides) causes 25-27% inhibition of the Isc. Mucosal addition of 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid inhibits the Isc by 17%. Serosal addition of 0.1 mM bumetanide inhibits the Isc by 28%. Amiloride (1 mM) inhibits the net transepithelial fluxes of Na and Cl by 55 and 41%, respectively. Substitution of Cl with gluconate inhibits the net Na flux by 50%, whereas substitution of HCO3 with HEPES inhibits 85-90% of the net Na flux and changes Cl absorption to net secretion. Based on these results, it is hypothesized that Na and Cl transport across the apical membrane is mediated by two pathways, Na-H/Cl-HCO3 exchange and Na-HCO3 cotransport. Partial recycling of Cl and HCO3 presumably occurs through a Cl conductive pathway and Cl-HCO3 exchange, respectively, in the apical membrane. This results in net Na absorption, which accounts for most of the Isc observed under basal conditions. The effect of bumetanide on the basolateral membrane and the fact that Cl secretion occurs when HCO3 is absent suggests that Cl secretion involves a basolateral NaCl or Na-K-Cl cotransport system arranged in series with a Cl conductive pathway in the apical membrane.


1992 ◽  
Vol 99 (2) ◽  
pp. 263-290 ◽  
Author(s):  
D P Joseph ◽  
S S Miller

Intracellular microelectrode techniques were used to characterize the electrical responses of the bovine retinal pigment epithelium (RPE)-choroid to epinephrine (EP) and several other catecholamines that are putative paracrine signals between the neural retina and the RPE. Nanomolar amounts of EP or norepinephrine (NEP), added to the apical bath, caused a series of conductance and voltage changes, first at the basolateral or choroid-facing membrane and then at the apical or retina-facing membrane. The relative potency of several adrenergic agonists and antagonists indicates that EP modulation of RPE transport begins with the activation of apical alpha-1-adrenergic receptors. The membrane-permeable calcium (Ca2+) buffer, amyl-BAPTA (1,2-bis(o-aminophenoxy)-ethane-N,N,N',N' tetraacetic acid) inhibited the EP-induced voltage and conductance changes by approximately 50-80%, implicating [Ca2+]i as a second messenger. This conclusion is supported by experiments using the Ca2+ ionophore A23187, which mimics the effects of EP. The basolateral membrane voltage response to EP was blocked by lowering cell Cl, by the presence of DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonic acid) in the basal bath, and by current clamping VB to the Cl equilibrium potential. In the latter experiments the EP-induced conductance changes were unaltered, indicating that EP increases basolateral membrane Cl conductance independent of voltage. The EP-induced change in basolateral Cl conductance was followed by a secondary decrease in apical membrane K conductance (approximately 50%) as measured by delta [K]o-induced diffusion potentials. Decreasing apical K from 5 to 2 mM in the presence of EP mimicked the effect of light on RPE apical and basolateral membrane voltage. These results indicate that EP may be an important paracrine signal that provides exquisite control of RPE physiology.


1984 ◽  
Vol 83 (6) ◽  
pp. 875-899 ◽  
Author(s):  
B A Hughes ◽  
S S Miller ◽  
T E Machen

A modified version of a capacitance probe technique has been used to measure fluid transport across the isolated retinal pigment epithelium (RPE)-choroid of the bullfrog. The accuracy of this measurement is 0.5-1.0 nl/min. Experiments carried out in the absence of external osmotic or hydrostatic gradients show that the RPE-choroid transports fluid from the retinal to the choroid side of the tissue at a rate of approximately 10 nl/min (4-6 microliters/cm2 X h). Net fluid absorption (Jv) was abolished within 10 min by the mitochondrial uncoupler 2,4-dinitrophenol. It was also inhibited (70%) by the removal of bicarbonate from the bulk solutions bathing the tissue. Ouabain caused a slow decrease in Jv (no effect at 10 min, 70% at 3 h), which indicates that RPE fluid transport is not directly coupled to the activity of the Na-K pump located at the apical membrane of this epithelium. In contrast to ouabain, cyclic AMP (cAMP) produced a quick decrease in Jv (84% within 5 min). Radioisotope experiments in the open circuit show that cAMP stimulated secretory fluxes of Na and Cl, which accounted for the observed cAMP-induced decrease in Jv. The direction of net fluid absorption, the magnitudes of the net ionic fluxes in the open circuit, and the dependence of Jv on external bicarbonate concentration strongly suggest that fluid absorption is generated primarily by the active absorption of bicarbonate.


1984 ◽  
Vol 83 (6) ◽  
pp. 853-874 ◽  
Author(s):  
S Miller ◽  
D Farber

In the frog retinal pigment epithelium (RPE), the cellular levels of cyclic AMP (cAMP) were measured in control conditions and after treatment with substances that are known to inhibit phosphodiesterase (PDE) activity (isobutyl-1-methylxanthine, SQ65442) or stimulate adenylate cyclase activity (forskolin). The cAMP levels were elevated by a factor of 5-7 compared with the controls in PDE-treated tissues and by a factor of 18 in forskolin-treated tissues. The exogenous application of cAMP (1 mM), PDE inhibitors (0.5 mM), or forskolin (0.1 mM) all produced similar changes in epithelial electrical parameters, such as transepithelial potential (TEP) and resistance (Rt), as well as changes in active ion transport. Adding 1 mM cAMP to the solution bathing the apical membrane transiently increased the short-circuit current (SCC) and the TEP (apical side positive) and decreased Rt. Microelectrode experiments showed that the elevation in TEP is due mainly to a depolarization of the basal membrane followed by, and perhaps also accompanied by, a smaller hyperpolarization of the apical membrane. The ratio of the apical to the basolateral membrane resistance increased in the presence of cAMP, and this increase, coupled with the decrease in Rt and the basolateral membrane depolarization, is consistent with a conductance increase at the basolateral membrane. Radioactive tracer experiments showed that cAMP increased the active secretion of Na (choroid to retina) and the active absorption of K (retina to choroid). Cyclic AMP also abolished the active absorption of Cl across the RPE. In sum, elevated cellular levels of cAMP affect active and passive transport mechanisms at the apical and basolateral membranes of the bullfrog RPE.


Sign in / Sign up

Export Citation Format

Share Document