Effect of the organic Ca2+ channel blocker D-600 on sarcoplasmic reticulum Ca2+ uptake in skeletal muscle

1997 ◽  
Vol 272 (1) ◽  
pp. C310-C317 ◽  
Author(s):  
A. Ortega ◽  
H. Gonzalez-Serratos ◽  
J. R. Lepock

Experiments were undertaken to study the possibility that the calcium channel blocker D-600 (gallopamil), which penetrates into muscle cells (20), facilitates excitation-contraction coupling in skeletal muscle (7) by a direct effect on the sarcoplasmic reticulum (SR). The effects of D-600 were studied on single phasic muscle fibers, either intact or split open. D-600 potentiated twitches in intact fibers at concentrations lower than those reported in whole muscles. In split fibers, the force produced by caffeine-induced Ca2+ release from the SR was reversibly inhibited by 5 microM D-600, when added to the Ca2+ loading solution. This inhibitory effect was inversely related to temperature, and it was dose dependent. When D-600 was added after Ca2+ loading and before caffeine exposure, or during the caffeine exposure itself, it did not inhibit Ca2+ release, but rather increased the development of force. We conclude that, apart from the blocking effect that D-600 may have on the voltage sensor, the drug penetrates into the myoplasm and affects excitation-contraction coupling by inhibiting the SR Ca2+ pump. This may be the consequence of a conformational change in the transmembrane Ca2+ binding domain of the ATPase.

Physiology ◽  
2000 ◽  
Vol 15 (6) ◽  
pp. 281-284 ◽  
Author(s):  
Susan L. Hamilton ◽  
Irina Serysheva ◽  
Gale M. Strasburg

Excitation-contraction coupling in cardiac and skeletal muscle involves the transverse-tubule voltage-dependent Ca2+ channel and the sarcoplasmic reticulum Ca2+ release channel. Both of these ion channels bind and are modulated by calmodulin in both its Ca2+-bound and Ca2+-free forms. Calmodulin is, therefore, potentially an important regulator of excitation-contraction coupling. Its precise role, however, has not yet been defined.


1990 ◽  
Vol 68 (9) ◽  
pp. 1207-1213 ◽  
Author(s):  
Margarete M. Trachez ◽  
R. Takashi Sudo ◽  
G. Suarez-Kurtz

Denervation potentiated the cooling-induced contractures and the halothane-cooling contractures of isolated extensor digitorum longus and soleus muscles of the mouse. These effects were more striking in extensor digitorum longus than in soleus muscles. Significant increases in the peak amplitudes of the halothane-cooling contractures of both muscles and of the cooling contractures of soleus muscle were observed within 2 and 7 days of denervation. The potentiation of the contractures persisted for 90 days, the period of this study. Denervation (>2 days) endowed extensor digitorum longus with the ability to generate cooling contractures in the absence of halothane. The rate of tension development of cooling-induced contractures in the absence or presence of halothane was significantly greater in denervated (2–90 days) than in innervated muscles. Denervation also reduced the effectiveness of procaine in inhibiting the halothane-cooling contractures. It is proposed that the potentiation of cooling-induced contractures in denervated muscles results primarily from an increase in the rate of efflux and in the quantity of Ca2+ released from the sarcoplasmic reticulum, upon cooling and (or) when challenged with halothane.Key words: denervation, excitation–contraction coupling, halothane, cooling-induced contractures, skeletal muscle.


2021 ◽  
Vol 153 (11) ◽  
Author(s):  
Ben Short

Study reveals how a slowly activating calcium channel is able to control rapid excitation–contraction coupling in skeletal muscle.


2018 ◽  
Vol 115 (6) ◽  
pp. 1376-1381 ◽  
Author(s):  
Marta Campiglio ◽  
Pierre Costé de Bagneaux ◽  
Nadine J. Ortner ◽  
Petronel Tuluc ◽  
Filip Van Petegem ◽  
...  

The adaptor proteins STAC1, STAC2, and STAC3 represent a newly identified family of regulators of voltage-gated calcium channel (CaV) trafficking and function. The skeletal muscle isoform STAC3 is essential for excitation–contraction coupling and its mutation causes severe muscle disease. Recently, two distinct molecular domains in STAC3 were identified, necessary for its functional interaction with CaV1.1: the C1 domain, which recruits STAC proteins to the calcium channel complex in skeletal muscle triads, and the SH3-1 domain, involved in excitation–contraction coupling. These interaction sites are conserved in the three STAC proteins. However, the molecular domain in CaV1 channels interacting with the STAC C1 domain and the possible role of this interaction in neuronal CaV1 channels remained unknown. Using CaV1.2/2.1 chimeras expressed in dysgenic (CaV1.1−/−) myotubes, we identified the amino acids 1,641–1,668 in the C terminus of CaV1.2 as necessary for association of STAC proteins. This sequence contains the IQ domain and alanine mutagenesis revealed that the amino acids important for STAC association overlap with those making contacts with the C-lobe of calcium-calmodulin (Ca/CaM) and mediating calcium-dependent inactivation of CaV1.2. Indeed, patch-clamp analysis demonstrated that coexpression of either one of the three STAC proteins with CaV1.2 opposed calcium-dependent inactivation, although to different degrees, and that substitution of the CaV1.2 IQ domain with that of CaV2.1, which does not interact with STAC, abolished this effect. These results suggest that STAC proteins associate with the CaV1.2 C terminus at the IQ domain and thus inhibit calcium-dependent feedback regulation of CaV1.2 currents.


Sign in / Sign up

Export Citation Format

Share Document