scholarly journals The insulin-sensitizing mechanism of myo-inositol is associated with AMPK activation and GLUT-4 expression in human endometrial cells exposed to a PCOS environment

2020 ◽  
Vol 318 (2) ◽  
pp. E237-E248 ◽  
Author(s):  
Heidy Cabrera-Cruz ◽  
Lorena Oróstica ◽  
Francisca Plaza-Parrochia ◽  
Ignacio Torres-Pinto ◽  
Carmen Romero ◽  
...  

Polycystic ovary syndrome (PCOS) is an endocrine-metabolic disorder characterized by hyperandrogenism and ovulatory dysfunction but also obesity and hyperinsulinemia. These characteristics induce an insulin-resistant state in tissues such as the endometrium, affecting its reproductive functions. Myo-inositol (MYO) is an insulin-sensitizing compound used in PCOS patients; however, its insulin-sensitizing mechanism is unclear. To understand the relationship of MYO with insulin action in endometrial cells, sodium/myo-inositol transporter 1 (SMIT-1) (MYO-transporter), and MYO effects on protein levels related to the insulin pathway were evaluated. SMIT-1 was assessed in endometrial tissue from women with normal weight, obesity, insulin resistance, and PCOS; additionally, using an in vitro model of human endometrial cells exposed to an environment resembling hyperinsulinemic-obese-PCOS, MYO effect was evaluated on p-AMPK and GLUT-4 levels and glucose uptake by Western blot, immunocytochemistry, and confocal microscopy, respectively. SMIT-1 was detected in endometrial tissue from all groups and decreased in PCOS and obesity ( P < 0.05 vs. normal weight ). In the in vitro model, PCOS conditions decreased p-AMPK levels, while they were restored with MYO ( P < 0.05). The diminished GLUT-4 protein levels promoted by PCOS environment were restored by MYO through SMIT-1 and p-AMPK-dependent mechanism ( P < 0.05). Also, MYO restored glucose uptake in cells under PCOS condition through a p-AMPK-dependent mechanism. Finally, these results were similar to those obtained with metformin treatment in the same in vitro conditions. Consequently, MYO could be a potential insulin sensitizer through its positive effects on insulin-resistant tissues as PCOS-endometrium, acting through SMIT-1, provoking AMPK activation and elevated GLUT-4 levels and, consequently, increase glucose uptake by human endometrial cells. Therefore, MYO may be used as an effective treatment option in insulin-resistant PCOS women.

2020 ◽  
Vol 48 (12) ◽  
pp. 030006052097142
Author(s):  
Xiao-qing Yang ◽  
Sheng-you Yu ◽  
Li Yu ◽  
Lin Ge ◽  
Yao Zhang ◽  
...  

Objective To investigate the mechanism through which tacrolimus, often used to treat refractory nephropathy, protects against puromycin-induced podocyte injury. Methods An in vitro model of puromycin-induced podocyte injury was established by dividing podocytes into three groups: controls, puromycin only (PAN group), and puromycin plus tacrolimus (FK506 group). Podocyte morphology, number, apoptosis rate and microtubule associated protein 1 light chain 3 alpha ( LC3) expression were compared. Results Puromycin caused podocyte cell body shrinkage and loose intercellular connections, but podocyte morphology in the FK506 group was similar to controls. The apoptosis rate was lower in the FK506 group versus PAN group. The low level of LC3 mRNA observed in untreated podocytes was decreased by puromycin treatment; however, levels of LC3 mRNA were higher in the FK506 group versus PAN group. Although LC3-I and LC3-II protein levels were decreased by puromycin, levels in the FK506 group were higher than the PAN group. Fewer podocyte autophagosomes were observed in the control and FK506 groups versus the PAN group. Cytoplasmic LC3-related fluorescence intensity was stronger in control and FK506 podocytes versus the PAN group. Conclusions Tacrolimus inhibited puromycin-induced mouse podocyte damage by regulating LC3 expression and enhancing autophagy.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Claudia Perrini ◽  
Maria Giuseppina Strillacci ◽  
Alessandro Bagnato ◽  
Paola Esposti ◽  
Maria Giovanna Marini ◽  
...  

2008 ◽  
Vol 14 (5) ◽  
pp. 301-307 ◽  
Author(s):  
M.C. Ferreira ◽  
C.A. Witz ◽  
L.S. Hammes ◽  
N. Kirma ◽  
F. Petraglia ◽  
...  

2008 ◽  
Vol 592 (1-3) ◽  
pp. 13-18 ◽  
Author(s):  
Merja Bläuer ◽  
Pentti K. Heinonen ◽  
Päivi Rovio ◽  
Timo Ylikomi

2021 ◽  
Vol 22 (15) ◽  
pp. 8302
Author(s):  
Kyong-Oh Shin ◽  
Sungeun Kim ◽  
Byeong Deog Park ◽  
Yoshikazu Uchida ◽  
Kyungho Park

Ceramides, a class of sphingolipids containing a backbone of sphingoid base, are the most important and effective structural component for the formation of the epidermal permeability barrier. While ceramides comprise approximately 50% of the epidermal lipid content by mass, the content is substantially decreased in certain inflammatory skin diseases, such as atopic dermatitis (AD), causing improper barrier function. It is widely accepted that the endocannabinoid system (ECS) can modulate a number of biological responses in the central nerve system, prior studies revealed that activation of endocannabinoid receptor CB1, a key component of ECS, triggers the generation of ceramides that mediate neuronal cell fate. However, as the impact of ECS on the production of epidermal ceramide has not been studied, we here investigated whether the ECS stimulates the generation of epidermal ceramides in an IL-4-treated in vitro model of skin inflammation using N-palmitoyl serinol (PS), an analog of the endocannabinoid N-palmitoyl ethanolamine. Accordingly, an IL-4-mediated decrease in cellular ceramide levels was significantly stimulated in human epidermal keratinocytes (KC) following PS treatment through both de novo ceramide synthesis- and sphingomyelin hydrolysis-pathways. Importantly, PS selectively increases ceramides with long-chain fatty acids (FAs) (C22–C24), which mainly account for the formation of the epidermal barrier, through activation of ceramide synthase (CerS) 2 and Cer3 in IL-4-mediated inflamed KC. Furthermore, blockade of cannabinoid receptor CB1 activation by AM-251 failed to stimulate the production of total ceramide as well as long-chain ceramides in response to PS. These studies demonstrate that an analog of endocannabinoid, PS, stimulates the generation of specific ceramide species as well as the total amount of ceramides via the endocannabinoid receptor CB1-dependent mechanism, thereby resulting in the enhancement of epidermal permeability barrier function.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Yanmei Zhang ◽  
Xiaoxiao Ge ◽  
Yongqing Li ◽  
Bingyang Zhang ◽  
Peijun Wang ◽  
...  

Abstract Background To investigate the roles of the transcription factors twist family bHLH transcription factor 1 (TWIST1), twist family bHLH transcription factor 2 (TWIST2), and peroxisome proliferator activated receptor gamma (PPARγ) in the progression of nonalcoholic steatohepatitis. Methods The protein levels of TWIST1, TWIST2 and PPARγ were determined in the serum of nonalcoholic fatty liver disease (NAFLD) patients and healthy controls by enzyme-linked immunosorbent assay (ELISA). An in vivo model for fatty liver was established by feeding C57BL/6 J mice a high-fat diet (HFD). An in vitro model of steatosis was established by treating LO-2 cells with oleic acid (OA). RNA sequencing was performed on untreated and OA-treated LO-2 cells followed by TWIST1, TWIST2 and PPARγ gene mRNA levels analysis, Gene Ontology (GO) enrichment and pathway analysis. Results The TWIST2 serum protein levels decreased significantly in all fatty liver groups (P < 0.05), while TWIST1 varied. TWIST2 tended to be lower in mice fed an HFD and was significantly lower at 3 months. Similarly, in the in vitro model, the TWIST2 protein level was downregulated significantly at 48 and 72 h after OA treatment. RNA sequencing of LO-2 cells showed an approximately 2.3-fold decrease in TWIST2, with no obvious change in TWIST1 and PPARγ. The PPAR signaling pathway was enriched, with 4 genes upregulated in OA-treated cells (P = 0.0018). The interleukin (IL)-17 and tumor necrosis factor (TNF) signaling pathways were enriched in OA-treated cells. Conclusions The results provide evidence that the TWIST2 and PPAR signaling pathways are important in NAFLD and shed light on a potential mechanism of steatosis.


Sign in / Sign up

Export Citation Format

Share Document