endocannabinoid receptor
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 17)

H-INDEX

16
(FIVE YEARS 2)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Daniel Zeve ◽  
Eric Stas ◽  
Joshua de Sousa Casal ◽  
Prabhath Mannam ◽  
Wanshu Qi ◽  
...  

AbstractEnteroendocrine (EE) cells are the most abundant hormone-producing cells in humans and are critical regulators of energy homeostasis and gastrointestinal function. Challenges in converting human intestinal stem cells (ISCs) into functional EE cells, ex vivo, have limited progress in elucidating their role in disease pathogenesis and in harnessing their therapeutic potential. To address this, we employed small molecule targeting of the endocannabinoid receptor signaling pathway, JNK, and FOXO1, known to mediate endodermal development and/or hormone production, together with directed differentiation of human ISCs from the duodenum and rectum. We observed marked induction of EE cell differentiation and gut-derived expression and secretion of SST, 5HT, GIP, CCK, GLP-1 and PYY upon treatment with various combinations of three small molecules: rimonabant, SP600125 and AS1842856. Robust differentiation strategies capable of driving human EE cell differentiation is a critical step towards understanding these essential cells and the development of cell-based therapeutics.


2021 ◽  
Author(s):  
Gareth Williams ◽  
David Chambers ◽  
Ruman Rahmam ◽  
Francisco Molina-Holgado

Background: We have previously reported that the endocannabinoid receptor inverse agonist AM630 is a potent inhibitor of isocitrade dehydrogenase-1 wild-type glioblastoma (GBM) core tumor cell proliferation. To uncover the mechanism behind the anti-tumour effects we have performed a transcriptional analysis of AM630 activity both in the tumour core cells (U87) and the invasive margin cells (GIN-8), the latter representing a better proxy of post-surgical residual disease. Results: The core and invasive margin cells exhibited markedly different gene expression profiles and only the core cells had high expression of a potential AM630 target, the CB1 receptor. Both cell types had moderate expression of the HTR2B serotonin receptor, a reported AM630 target. We found that the AM630 driven transcriptional response was substantially higher in the central cells than in the invasive margin cells, with the former driving the up regulation of immune response and the down regulation of cell cycle and metastatic pathways and correlating with transcriptional responses driven by established anti-neoplastics as well as serotonin receptor antagonists. Conclusion: Our results highlight the different responsiveness of the core and invasive margin cells. Taken together, whilst our findings identify AM630 as an anti-neoplastic drug, showing a high correlation with known anti-proliferative drugs, we find distinct drug sensitivies of the infiltrative margin relative to contrast-enhanced core regions of GBM upon which failed molecular targeted therapies to date have been predicated.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Junying Wang ◽  
Jinling Zhang ◽  
Yonghui Gao ◽  
Yu Chen ◽  
Chenglin Duanmu ◽  
...  

Acupuncture therapy is effective in relieving postoperative pain of neck surgery, but its underlying mechanisms remain largely unknown. This study, in the incisional neck pain rat model, was designed to explore whether the endocannabinoid receptor 1 (CB1) in the cervical spinal cord is involved in the analgesic effect of electroacupuncture (EA) or not.The incisional neck pain model was established by making a longitudinal incision and applied EA treatment of Futu (LI18), Hegu-Neiguan (LI4-PC6), or Zusanli-Yanglingquan (ST36-GB34) for pain relief. The results showed that EA LI18 and EA LI4-PC6 effectively relieve allodynia caused by neck incision, which was obviously better than EA ST34-GB34 ( P  < 0.05). After EA, the expression levels of CB1 mRNA at 4h in the EALI18 group, and 24 and 48h in both EALI18 and EALI4-PC6 groups, and those of CB1 protein at 4, 24, and 48h in the EALI18 group, and the immunoactivity of CB1 in both EALI18 and EALI4-PC6 groups at 4h were significantly upregulated in contrast to those of the model group ( P  < 0.05). EA of either acupoint group had no effect on the expression of CB2 protein ( P  > 0.05). Moreover, the antinociceptive effect of EA was reversed by AM251 (CB1 antagonist). Immunofluorescence dual staining showed that CB1 expressed in astrocytes in the superficial layer (laminae I and II) of dorsal horns of the cervical spinal cord. Therefore, the findings of this study revealed that upregulation of CB1 expression in the cervical spinal cord contributes to the analgesic effect of EA in incisional neck pain rats. The CB1 receptor expresses on astrocytes.


2021 ◽  
Vol 22 (15) ◽  
pp. 8302
Author(s):  
Kyong-Oh Shin ◽  
Sungeun Kim ◽  
Byeong Deog Park ◽  
Yoshikazu Uchida ◽  
Kyungho Park

Ceramides, a class of sphingolipids containing a backbone of sphingoid base, are the most important and effective structural component for the formation of the epidermal permeability barrier. While ceramides comprise approximately 50% of the epidermal lipid content by mass, the content is substantially decreased in certain inflammatory skin diseases, such as atopic dermatitis (AD), causing improper barrier function. It is widely accepted that the endocannabinoid system (ECS) can modulate a number of biological responses in the central nerve system, prior studies revealed that activation of endocannabinoid receptor CB1, a key component of ECS, triggers the generation of ceramides that mediate neuronal cell fate. However, as the impact of ECS on the production of epidermal ceramide has not been studied, we here investigated whether the ECS stimulates the generation of epidermal ceramides in an IL-4-treated in vitro model of skin inflammation using N-palmitoyl serinol (PS), an analog of the endocannabinoid N-palmitoyl ethanolamine. Accordingly, an IL-4-mediated decrease in cellular ceramide levels was significantly stimulated in human epidermal keratinocytes (KC) following PS treatment through both de novo ceramide synthesis- and sphingomyelin hydrolysis-pathways. Importantly, PS selectively increases ceramides with long-chain fatty acids (FAs) (C22–C24), which mainly account for the formation of the epidermal barrier, through activation of ceramide synthase (CerS) 2 and Cer3 in IL-4-mediated inflamed KC. Furthermore, blockade of cannabinoid receptor CB1 activation by AM-251 failed to stimulate the production of total ceramide as well as long-chain ceramides in response to PS. These studies demonstrate that an analog of endocannabinoid, PS, stimulates the generation of specific ceramide species as well as the total amount of ceramides via the endocannabinoid receptor CB1-dependent mechanism, thereby resulting in the enhancement of epidermal permeability barrier function.


2021 ◽  
Vol 132 (2) ◽  
pp. S100
Author(s):  
Calogera M. Simonaro ◽  
Xingxuan He ◽  
Victor DeAngelis ◽  
Changzhi Zhu ◽  
Edward H. Schuchman

2020 ◽  
Vol 21 (15) ◽  
pp. 1593-1605 ◽  
Author(s):  
Hemen S. Ved ◽  
Gaurav M. Doshi

Schizophrenia is a multifactorial, highly complex behavioral and cognitive disorder caused by disruptions of neurotransmitters in the brain, consequently affecting its functioning. The disorder is known to affect approximately 1% of the adult population worldwide. Antipsychotics used in the treatment have considerable drawbacks as they primarily aim to alleviate the positive symptoms of different aspects of the disorder and fail to treat the negative and cognitive symptoms. Considering the poor functional outcome of conventional antipsychotic therapy, the recent development of effective targets is of clinical importance. In this review, we summarize perspective on recent approaches and advances on schizophrenia. New therapeutically potential compounds for the treatment of schizophrenia act on metabotropic glutamate receptor, Matrix metalloproteinase, endocannabinoid receptor, nicotinic acetylcholine receptor, muscarinic acetylcholine cholinergic receptor and Dynorphin /Kappa Opioid receptor systems. This review explores the functions of different receptors other than dopaminergic systems to treat and manage schizophrenia effectively. The article would provide readers guidance on newer targets related to schizophrenia.


2020 ◽  
Vol 34 (11) ◽  
pp. 107682
Author(s):  
Tina K. Thethi ◽  
Aster Sigel ◽  
Shanker Japa ◽  
Bonnie Katalenich ◽  
Shuqian Liu ◽  
...  

Cell Reports ◽  
2020 ◽  
Vol 33 (4) ◽  
pp. 108270 ◽  
Author(s):  
Yuanchao Ye ◽  
Marwa Abu El Haija ◽  
Donald A. Morgan ◽  
Deng Guo ◽  
Yang Song ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2127
Author(s):  
Sujay Guha ◽  
Serafina Calarco ◽  
M. Salomé Gachet ◽  
Jürg Gertsch

In eukaryotes, the C20:4 polyunsaturated fatty acid arachidonic acid (AA) plays important roles as a phospholipid component, signaling molecule and precursor of the endocannabinoid-prostanoid axis. Accordingly, the absence of AA causes detrimental effects. Here, compensatory mechanisms involved in AA deficiency in Caenorhabditis elegans were investigated. We show that the ω-3 C20:4 polyunsaturated fatty acid juniperonic acid (JuA) is generated in the C. elegans fat-3(wa22) mutant, which lacks Δ6 desaturase activity and cannot generate AA and ω-3 AA. JuA partially rescued the loss of function of AA in growth and development. Additionally, we observed that supplementation of AA and ω-3 AA modulates lifespan of fat-3(wa22) mutants. We described a feasible biosynthetic pathway that leads to the generation of JuA from α-linoleic acid (ALA) via elongases ELO-1/2 and Δ5 desaturase which is rate-limiting. Employing liquid chromatography mass spectrometry (LC-MS/MS), we identified endocannabinoid-like ethanolamine and glycerol derivatives of JuA and ω-3 AA. Like classical endocannabinoids, these lipids exhibited binding interactions with NPR-32, a G protein coupled receptor (GPCR) shown to act as endocannabinoid receptor in C. elegans. Our study suggests that the eicosatetraenoic acids AA, ω-3 AA and JuA share similar biological functions. This biosynthetic plasticity of eicosatetraenoic acids observed in C. elegans uncovers a possible biological role of JuA and associated ω-3 endocannabinoids in Δ6 desaturase deficiencies, highlighting the importance of ALA.


Sign in / Sign up

Export Citation Format

Share Document