Patient-specific computational modeling of subendothelial LDL accumulation in a stenosed right coronary artery: effect of hemodynamic and biological factors

2013 ◽  
Vol 304 (11) ◽  
pp. H1455-H1470 ◽  
Author(s):  
Antonis I. Sakellarios ◽  
Michail I. Papafaklis ◽  
Panagiotis Siogkas ◽  
Lambros S. Athanasiou ◽  
Themistoklis P. Exarchos ◽  
...  

Atherosclerosis is a systemic disease with local manifestations. Low-density lipoprotein (LDL) accumulation in the subendothelial layer is one of the hallmarks of atherosclerosis onset and ignites plaque development and progression. Blood flow-induced endothelial shear stress (ESS) is causally related to the heterogenic distribution of atherosclerotic lesions and critically affects LDL deposition in the vessel wall. In this work we modeled blood flow and LDL transport in the coronary arterial wall and investigated the influence of several hemodynamic and biological factors that may regulate LDL accumulation. We used a three-dimensional model of a stenosed right coronary artery reconstructed from angiographic and intravascular ultrasound patient data. We also reconstructed a second model after restoring the patency of the stenosed lumen to its nondiseased state to assess the effect of the stenosis on LDL accumulation. Furthermore, we implemented a new model for LDL penetration across the endothelial membrane, assuming that endothelial permeability depends on the local lumen LDL concentration. The results showed that the presence of the stenosis had a dramatic effect on the local ESS distribution and LDL accumulation along the artery, and areas of increased LDL accumulation were observed in the downstream region where flow recirculation and low ESS were present. Of the studied factors influencing LDL accumulation, 1) hypertension, 2) increased endothelial permeability (a surrogate of endothelial dysfunction), and 3) increased serum LDL levels, especially when the new model of variable endothelial permeability was applied, had the largest effects, thereby supporting their role as major cardiovascular risk factors.

2021 ◽  
Vol 11 (23) ◽  
pp. 11361
Author(s):  
Abdulgaphur Athani ◽  
Nik Nazri Nik Ghazali ◽  
Irfan Anjum Badruddin ◽  
Abdullah Y. Usmani ◽  
Sarfaraz Kamangar ◽  
...  

Coronary artery disease (CAD) is stated as one of the most common causes of death all over the world. This article explores the influence of multi stenosis in a flexible and rigid left coronary artery (LCA) model using a multiphase blood flow system which has not yet been studied. Two-way fluid–solid interaction (FSI) is employed to achieve flow within the flexible artery model. A realistic three-dimensional model of multi-stenosed LCA was reconstructed based on computerized tomography (CT) images. The fluid domain was solved using a finite volume-based commercial software (FLUENT 2020). The fluid (blood) and solid (wall) domains were fully coupled by using the ANSYS Fluid-Structure Interaction solver. The maximum pressure drops, and wall shear stress was determined across the sever stenosis (90% AS). The higher region of displacement occurs at the pre-stenosis area compared to the other area of the left coronary artery model. An increase in blood flow velocity across the restricted regions (stenosis) in the LCA was observed, whereas the recirculation zone at the post-stenosis and bifurcation regions was noted. An overestimation of hemodynamic descriptors for the rigid models was found as compared to the FSI models.


2021 ◽  
pp. 1-18
Author(s):  
Abdulgaphur Athani ◽  
N.N.N. Ghazali ◽  
Irfan Anjum Badruddin ◽  
Sarfaraz Kamangar ◽  
Ali E. Anqi ◽  
...  

BACKGROUND: The blood flow in the human artery has been a subject of sincere interest due to its prime importance linked with human health. The hemodynamic study has revealed an essential aspect of blood flow that eventually proved to be paramount to make a correct decision to treat patients suffering from cardiac disease. OBJECTIVE: The current study aims to elucidate the two-way fluid-structure interaction (FSI) analysis of the blood flow and the effect of stenosis on hemodynamic parameters. METHODS: A patient-specific 3D model of the left coronary artery was constructed based on computed tomography (CT) images. The blood is assumed to be incompressible, homogenous, and behaves as Non-Newtonian, while the artery is considered as a nonlinear elastic, anisotropic, and incompressible material. Pulsatile flow conditions were applied at the boundary. Two-way coupled FSI modeling approach was used between fluid and solid domain. The hemodynamic parameters such as the pressure, velocity streamline, and wall shear stress were analyzed in the fluid domain and the solid domain deformation. RESULTS: The simulated results reveal that pressure drop exists in the vicinity of stenosis and a recirculation region after the stenosis. It was noted that stenosis leads to high wall stress. The results also demonstrate an overestimation of wall shear stress and velocity in the rigid wall CFD model compared to the FSI model.


2020 ◽  
Author(s):  
Zhou Zhao ◽  
Chun Fu ◽  
Li-xue Zhang ◽  
Guo-dong Zhang ◽  
Yu Chen

Abstract Background: With the ageing of China's population, the incidence and mortality of coronary atherosclerotic heart disease (CAD) is increasing year by year, which brings a heavy burden to the family and society [1]. We aimed to analyse the strategy of coronary artery bypass grafting (CABG) in the right coronary artery and to compare the haemodynamic characteristics of the sequential grafts with those of single grafts and to observe the patency rate of those grafts for one week after the operation.Methods: A total of 242 patients (178 men, mean age 62.6±8.8 years) underwent right coronary artery bypass grafting in our hospital from October 2016 to January 2019. The blood flow (Q, ml/min), pulsatility index (PI) and related parameters of the grafts were measured and recorded by TTFM during the CABG. The patency of the grafts was evaluated by coronary computed tomography (CT) for one week after the operation. Results: The most common material used for the graft in the right coronary system of CABG is the greater saphenous vein (92.3%), followed by the radial artery (5.5%) and the internal mammary artery (1.9%). The highest frequency target of the right coronary artery is the posterior descending artery (PDA) (47.6%), followed by the right main coronary artery (RCA) (29.1%) and the posterior branch of the left ventricle (PL) (23.3%). The proportion of single grafts was the highest for the right coronary artery in CABG (178 cases, 67.9%), followed by a graft of the PDA-PL (42 cases, 16.0%) and other sequential grafts among the different coronary artery systems (including the system of the left anterior descending artery (LAD) and the left circumflex (LCX)). Whether there were sequential grafts of the PDA-PL or other sequential grafts among the different systems of the coronary artery, the instantaneous flow of a group of sequential grafts was higher than that of a single graft, and the difference had statistical significance (P < 0.01). However, there were no significant differences in the flow between the groups of sequential grafts (P = 0.410). Diastolic flow (DF) in the group of sequential grafts of the right coronary system was better than that in the non-sequential group (P < 0.001), and the difference had statistical significance. There was no significant difference between the DF of the groups of the other system of sequential grafts and that of the right coronary sequential grafts. Coronary artery CT suggested that there were 11 cases of poorly developing grafts or stenosis and occlusion a week after the operation, and those phenomenon mainly occurred in the group with a single graft. There was only one case that was occluded in the group of other systems of sequential grafts, and statistically significant differences existed between the two groups (P < 0.01).Conclusions: In our centre, the most common form of CABG in the right coronary artery system is a non-sequential vein bridge to the PDA. Whether there are sequential grafts of the PDA-PL or other sequential grafts among the different coronary artery systems, the instantaneous flow of a group of sequential grafts is higher than that of a single graft. DF in the group of sequential grafts of the right coronary system was better than that in the non-sequential group.


Sign in / Sign up

Export Citation Format

Share Document