scholarly journals Cerebrovascular effects of the thigh cuff maneuver

2015 ◽  
Vol 308 (7) ◽  
pp. H688-H696 ◽  
Author(s):  
R. B. Panerai ◽  
N. P. Saeed ◽  
T. G. Robinson

Arterial hypotension can be induced by sudden release of inflated thigh cuffs (THC), but its effects on the cerebral circulation have not been fully described. In nine healthy subjects [aged 59 (9) yr], bilateral cerebral blood flow velocity (CBFV) was recorded in the middle cerebral artery (MCA), noninvasive arterial blood pressure (BP) in the finger, and end-tidal CO2 (ETCO2) with nasal capnography. Three THC maneuvers were performed in each subject with cuff inflation 20 mmHg above systolic BP for 3 min before release. Beat-to-beat values were extracted for mean CBFV, BP, ETCO2, critical closing pressure (CrCP), resistance-area product (RAP), and heart rate (HR). Time-varying estimates of the autoregulation index [ARI( t)] were also obtained using an autoregressive-moving average model. Coherent averages synchronized by the instant of cuff release showed significant drops in mean BP, CBFV, and RAP with rapid return of CBFV to baseline. HR, ETCO2, and ARI( t) were transiently increased, but CrCP remained relatively constant. Mean values of ARI( t) for the 30 s following cuff release were not significantly different from the classical ARI [right MCA 5.9 (1.1) vs. 5.1 (1.6); left MCA 5.5 (1.4) vs. 4.9 (1.7)]. HR was strongly correlated with the ARI( t) peak after THC release (in 17/22 and 21/24 recordings), and ETCO2 was correlated with the subsequent drop in ARI( t) (19/22 and 20/24 recordings). These results suggest a complex cerebral autoregulatory response to the THC maneuver, dominated by myogenic mechanisms and influenced by concurrent changes in ETCO2 and possible involvement of the autonomic nervous system and baroreflex.

2013 ◽  
Vol 114 (10) ◽  
pp. 1406-1412 ◽  
Author(s):  
Angela S. M. Salinet ◽  
Thompson G. Robinson ◽  
Ronney B. Panerai

The association between neural activity and cerebral blood flow (CBF) has been used to assess neurovascular coupling (NVC) in health and diseases states, but little attention has been given to the contribution of simultaneous changes in peripheral covariates. We used an innovative approach to assess the contributions of arterial blood pressure (BP), PaCO2, and the stimulus itself to changes in CBF velocities (CBFv) during active (MA), passive (MP), and motor imagery (MI) paradigms. Continuous recordings of CBFv, beat-to-beat BP, heart rate, and breath-by-breath end-tidal CO2 (EtCO2) were performed in 17 right-handed subjects before, during, and after motor-cognitive paradigms performed with the right arm. A multivariate autoregressive-moving average model was used to calculate the separate contributions of BP, EtCO2, and the neural activation stimulus (represented by a metronome on-off signal) to the CBFv response during paradigms. Differences were found in the bilateral CBFv responses to MI compared with MA and MP, due to the contributions of stimulation ( P < 0.05). BP was the dominant contributor to the initial peaked CBFv response in all paradigms with no significant differences between paradigms, while the contribution of the stimulus explained the plateau phase and extended duration of the CBFv responses. Separating the neural activation contribution from the influences of other covariates, it was possible to detect differences between three paradigms often used to assess disease-related NVC. Apparently similar CBFv responses to different motor-cognitive paradigms can be misleading due to the contributions from peripheral covariates and could lead to inaccurate assessment of NVC, particularly during MI.


2012 ◽  
Vol 302 (2) ◽  
pp. H459-H466 ◽  
Author(s):  
Ronney B. Panerai ◽  
Angela S. M. Salinet ◽  
Thompson G. Robinson

Motor stimulation induces a neurovascular response that can be detected by continuous measurement of cerebral blood flow (CBF). Simultaneous changes in arterial blood pressure (ABP) and PaCO2 have been reported, but their influence on the CBF response has not been quantified. Continuous bilateral recordings of CBF velocity (CBFV), ABP, and end-tidal CO2 (ETCO2) were obtained in 10 healthy middle-aged subjects at rest and during 60 s of repetitive, metronome-controlled (1 Hz) elbow flexion. A multivariate autoregressive-moving average model was adopted to quantify the relationship between beat-to-beat changes in ABP, breath-by-breath ETCO2, and the motor stimulus, represented by the metronome on-off signal (inputs), and the CBFV response to stimulation (output). All three inputs contributed to explain CBFV variance following stimulation. For the ipsi- and contralateral hemispheres, ABP explained 20.3 ± 17.3% ( P = 0.0007) and 19.5 ± 17.2% ( P = 0.01) of CBFV variance, respectively. Corresponding values for ETCO2 and metronome signals were 22.0 ± 24.2% ( P = 0.008), 24.0 ± 24.1% ( P = 0.037), 32.7 ± 22.5% ( P = 0.0015), and 43.2 ± 25.1% ( P = 0.013), respectively. Synchronized population averages suggest that the initial sudden change in CBFV was largely due to ABP, while the influence of ETCO2 was more erratic. The component due to elbow flexion showed a well-defined pattern, with rise time slower than the main CBFV change but reaching a stable plateau after 15 s of stimulation. Identifying and removing the influences of ABP and PaCO2 to motor-induced changes in CBF should lead to more robust estimates of neurovascular coupling and better understanding of its physiological covariates.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Xin Jin ◽  
Xin Liu ◽  
Jinyun Guo ◽  
Yi Shen

AbstractPolar motion is the movement of the Earth's rotational axis relative to its crust, reflecting the influence of the material exchange and mass redistribution of each layer of the Earth on the Earth's rotation axis. To better analyze the temporally varying characteristics of polar motion, multi-channel singular spectrum analysis (MSSA) was used to analyze the EOP 14 C04 series released by the International Earth Rotation and Reference System Service (IERS) from 1962 to 2020, and the amplitude of the Chandler wobbles were found to fluctuate between 20 and 200 mas and decrease significantly over the last 20 years. The amplitude of annual oscillation fluctuated between 60 and 120 mas, and the long-term trend was 3.72 mas/year, moving towards N56.79 °W. To improve prediction of polar motion, the MSSA method combining linear model and autoregressive moving average model was used to predict polar motion with ahead 1 year, repeatedly. Comparing to predictions of IERS Bulletin A, the results show that the proposed method can effectively predict polar motion, and the improvement rates of polar motion prediction for 365 days into the future were approximately 50% on average.


Sign in / Sign up

Export Citation Format

Share Document