Discrepancy between microsphere and diffusible tracer estimates of perfusion to ischemic myocardium

1985 ◽  
Vol 249 (2) ◽  
pp. H255-H264 ◽  
Author(s):  
S. Yoshida ◽  
S. Akizuki ◽  
D. Gowski ◽  
J. M. Downey

This study critically tests the ability of microspheres to accurately measure perfusion to ischemic myocardium. The left anterior descending coronary artery was cannulated and perfused with arterial blood. The perfusion line was clamped, and a sidearm between the clamp and the cannula was opened to the atmosphere, allowing blood to flow retrograde from the distal segment of the artery. Measurement of regional blood flow during retrograde flow diversion with 15-micron microspheres revealed essentially zero flow to the perfused segment (0.005 ml X min-1 X g-1). Measurements under the same conditions by either 86Rb uptake or 133Xe washout revealed that an appreciable perfusion of the tissue persisted during retrograde flow diversion (0.043 and 0.11 ml X min-1 X g-1, respectively, for the 2 methods). Thus we have identified a condition during which microspheres indicate zero flow to the tissue but diffusible tracers can both be washed in and washed out at a brisk rate. We conclude that with simple occlusion there is a hidden component of perfusion to an ischemic zone that cannot be measured by microspheres, causing them to underestimate flow by about 25% in that condition.

1989 ◽  
Vol 257 (3) ◽  
pp. H785-H790
Author(s):  
T. Sakamoto ◽  
W. W. Monafo

[14C]butanol tissue uptake was used to measure simultaneously regional blood flow in three regions of the brain (cerebral and cerebellar hemispheres and brain stem) and in five levels of the spinal cord in 10 normothermic rats (group A) and in 10 rats in which rectal temperature had been lowered to 27.7 +/- 0.3 degrees C by applying ice to the torso (group B). Pentobarbital sodium anesthesia was used. Mean arterial blood pressure varied minimally between groups as did arterial pH, PO2, and PCO2. In group A, regional spinal cord blood flow (rSCBF) varied from 49.7 +/- 1.6 to 62.6 +/- 2.1 ml.min-1.100 g-1; in brain, regional blood flow (rBBF) averaged 74.4 +/- 2.3 ml.min-1.100 g-1 in the whole brain and was highest in the brain stem. rSCBF in group B was elevated in all levels of the cord by 21-34% (P less than 0.05). rBBF, however, was lowered by 21% in the cerebral hemispheres (P less than 0.001) and by 14% in the brain as a whole (P less than 0.05). The changes in calculated vascular resistance tended to be inversely related to blood flow in all tissues. We conclude that rBBF is depressed in acutely hypothermic pentobarbital sodium-anesthetized rats, as has been noted before, but that rSCBF rises under these experimental conditions. The elevation of rSCBF in hypothermic rats confirms our previous observations.


1997 ◽  
Vol 273 (3) ◽  
pp. R1126-R1131 ◽  
Author(s):  
Y. X. Wang ◽  
J. T. Crofton ◽  
S. L. Bealer ◽  
L. Share

The greater pressor response to vasopressin in male than in nonestrous female rats results from a greater increase in total peripheral resistance in males. The present study was performed to identify the vascular beds that contribute to this difference. Mean arterial blood pressure (MABP) and changes in blood flow in the mesenteric and renal arteries and terminal aorta were measured in conscious male and nonestrous female rats 3 h after surgery. Graded intravenous infusions of vasopressin induced greater increases in MABP and mesenteric vascular resistance and a greater decrease in mesenteric blood flow in males. Vasopressin also increased renal vascular resistance to a greater extent in males. Because renal blood flow remained unchanged, this difference may be due to autoregulation. The vasopressin-induced reduction in blood flow and increased resistance in the hindquarters were moderate and did not differ between sexes. Thus the greater vasoconstrictor response to vasopressin in the mesenteric vascular bed of male than nonestrous females contributed importantly to the sexually dimorphic pressor response to vasopressin in these experiments.


1986 ◽  
Vol 250 (3) ◽  
pp. R499-R504 ◽  
Author(s):  
F. M. Faraci ◽  
M. R. Fedde

To investigate mechanisms that may allow birds to tolerate extreme high altitude (hypocapnic hypoxia), we examined the effects of severe hypocapnia and moderate hypercapnia on regional blood flow in bar-headed geese (Anser indicus), a species that flies at altitudes up to 9,000 m. Cerebral, coronary, and pectoral muscle blood flows were measured using radioactive microspheres, while arterial CO2 tension (PaCO2) was varied from 7 to 62 Torr in awake normoxic birds. Arterial blood pressure was not affected by hypocapnia but increased slightly during hypercapnia. Heart rate did not change during alterations in PaCO2. Severe hypocapnia did not significantly alter cerebral, coronary, or pectoral muscle blood flow. Hypercapnia markedly increased cerebral and coronary blood flow, but pectoral muscle blood flow was unaffected. The lack of a blood flow reduction during severe hypocapnia may represent an important adaptation in these birds, enabling them to increase O2 delivery to the heart and brain at extreme altitude despite the presence of a very low PaCO2.


1980 ◽  
Vol 238 (2) ◽  
pp. H244-H248 ◽  
Author(s):  
F. Rivas ◽  
J. C. Rembert ◽  
R. J. Bache ◽  
F. R. Cobb ◽  
J. C. Greenfield

The effect of 100% oxygen inhalation on regional transmural myocardial blood flow following 45 s of actue total left circumflex coronary artery occlusion was studied in six awake dogs chronically instrumented with a coronary occluder and catheters in the aorta and left atrium. After inhalation of either room air or 100% oxygen for at least 30 min and following the 45-s occlusion, transmural myocardial blood flow was determined with radioactive microspheres (7--10 micrometers). Each dog underwent two occlusions of the left circumflex coronary artery; one during inhalation of rrom air and the other during 100% oxygen. During room air inhalation, mean regional myocardial blood flow to nonischemic, intermediate, and ischemic regions was 0.92 +/- 0.05, 0.51 +/- 0.08, and 0.10 +/- 0.02 ml . min-1 . g-1, respectively. During 100% oxygen administration, flow was significantly diminished in each region to 0.75 +/- 0.04, 0.41 +/- 0.07, and 0.06 +/- 0.01 ml . min-1 . g-1, respectively. Transmural blood flow to each layer was uniformly reduced in all regions. These data indicate that 100% oxygen further reduces myocardial blood flow to ischemic regions.


1996 ◽  
Vol 271 (1) ◽  
pp. H203-H211 ◽  
Author(s):  
H. Bitterman ◽  
V. Brod ◽  
G. Weisz ◽  
D. Kushnir ◽  
N. Bitterman

This study investigated mechanisms of the hemodynamic effects of oxygen in hemorrhagic shock induced by bleeding 30% of the total blood volume in anesthetized rats. An ultrasonic flowmeter was used to monitor regional blood flow. Changes in tissue perfusion were assessed by the laser-Doppler technique. The inhalation of 100% oxygen induced a significant increase in mean arterial blood pressure (MABP) and vascular resistance in the hindquarters, with a concomitant decrease in blood flow in the distal aorta and biceps femoris muscle. In contrast, oxygen did not change vascular resistance in the superior mesenteric artery (SMA) and renal beds and induced a significant increase in blood flow to the renal artery, SMA, and small bowel in hemorrhaged rats. L-Arginine (100 mg/kg iv) but not D-arginine or the vehicle (0.9% NaCl) completely abolished the effects of oxygen on blood pressure and reversed its effects on blood flow and resistance in the hindquarters and biceps femoris muscle. Administration of the nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine methyl ester (50 mg/kg iv) significantly increased MABP and the resistance in the three vascular beds. Pretreatment of hemorrhaged rats with a superoxide dismutase mimic, the NO-stable radical 2,2,6,6-tetramethylpiperidine-N-oxyl (5 mg/kg iv), resulted in significantly diminished effects of oxygen on hindquarter hemodynamics. These results demonstrate a differential effect of oxygen, which increases vascular resistance in the hindquarters without a significant effect in the splanchnic and renal beds, thus favoring an increase in splanchnic and renal perfusion. It is suggested that inactivation of NO by reactive oxygen species may underlie the effects of oxygen on hindquarter vascular tone during shock.


1985 ◽  
Vol 249 (3) ◽  
pp. H485-H491 ◽  
Author(s):  
R. F. Tuma ◽  
G. L. Irion ◽  
U. S. Vasthare ◽  
L. A. Heinel

The purpose of this investigation was to characterize the changes in regional blood flow and central hemodynamic measures that occur in the rat as a result of the aging process. The isotope-labeled microsphere technique was used to measure cardiac output and regional blood flows in conscious and anesthetized adult (12 mo) and senescent (24 mo) Fischer 344 virgin female rats. No significant changes were observed in central hemodynamic measurements or regional blood flows in conscious rats with the exception of a 25% reduction in splenic blood flow. Pentobarbital anesthesia significantly reduced cardiac index and heart rate but elevated total peripheral resistance and mean arterial blood pressure. There was a decrease in blood flow to skeletal muscle, spleen, duodenum, stomach, and brain tissue samples and increased hepatic arterial blood flow in both age groups. The use of anesthesia caused a greater reduction in the cardiac index and brain blood flow in the senescent anesthetized rats than in the adult rats. Heart and kidney blood flows were decreased by anesthesia in the senescent rats but not in the adult rats. Skeletal muscle blood flow, however, was significantly greater in the senescent anesthetized rats than in the younger anesthetized animals. Although body weight and organ weights of the liver, spleen, kidneys, stomach, heart, and brain were significantly greater for the senescent rats, no differences could be demonstrated in tibial length or lean body mass.


2006 ◽  
Vol 105 (3) ◽  
pp. 492-497 ◽  
Author(s):  
Glenn S. Murphy ◽  
Joseph W. Szokol ◽  
Jesse H. Marymont ◽  
Michael J. Avram ◽  
Jeffery S. Vender ◽  
...  

Background Flushing of radial arterial catheters may be associated with retrograde embolization of air or thrombus into the cerebral circulation. For embolization into the central circulation to occur, sufficient pressure must be generated during the flushing process to reverse antegrade blood flow in the arterial blood vessels of the upper extremity. This ultrasound study was designed to examine whether routine radial catheter flushing practices produce retrograde blood flow patterns in the brachial and proximal axillary arteries. Methods Duplex ultrasound examinations of the brachial and axillary arteries were conducted in 100 surgical patients to quantify direction and velocity of blood flow during catheter flushing. After obtaining Doppler spectral images of brachial and axillary arterial flow patterns, manual flushing was performed by injecting 10 ml flush solution using a syringe at a rate reflecting standard clinical practices. The flow-regulating device on the pressurized (300 mmHg) arterial flushing-sampling system was then opened for 10 s to deliver a rapid bolus of fluid (flush valve opening). Results The rate of manual flush solution injection through the radial arterial catheter was related to the probability of retrograde flow in the axillary artery (P < 0.001). Reversed arterial flow was noted in the majority of subjects (33 of 51) at a manual flush rate of less than 9 s and in no subjects (0 of 48) at a rate 9 s or greater. Retrograde flow was observed less frequently during flush valve opening (2 of 99 patients; P < 0.001 vs. manual flushing). Conclusions Rapid manual flushing of radial arterial catheters at rates faster than 1 ml/s produces retrograde flow in the proximal axillary artery.


Sign in / Sign up

Export Citation Format

Share Document